Protons are positively charged and neutrons are neutral whereas electrons are negatively charged.
Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere
= 2/5 M R²
Spherical shell
= 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I =
+ M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic =
+ M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is =
+ M [
²
Is = Ic
2/5 MR² + M
² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R
Answer:
Motors commonly contain a "commutator" which allows a magnetic field due to a loop of wire to always be in a say "clockwise or counterclockwise" direction even tho the loop of wire is rotating.
That means that magnetic field due to the surrounding magnets is always in the same direction, but the magnetic field due to the rotating loop of wire is continually changing so that it will always oppose the surrounding field which remains in a constant direction.
This is most easily seen in a "DC - direct current motor".
Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m