1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klemol [59]
3 years ago
14

A sample of metallic frewium weighs 185N on a spring scale in air. When immersed in pure water, the frewium pulls on the scale w

ith a force of 155N. What is the buoyant force provided by the water? What is the density of metallic frewium?
Physics
1 answer:
balu736 [363]3 years ago
3 0

Wow !  This one could have some twists and turns in it.
Fasten your seat belt.  It's going to be a boompy ride.

-- The buoyant force is precisely the missing <em>30N</em> .

--  In order to calculate the density of the frewium sample, we need to know
its mass and its volume.  Then, density = mass/volume .

-- From the weight of the sample in air, we can closely calculate its mass.

   Weight = (mass) x (gravity)
   185N = (mass) x (9.81 m/s²)
   Mass = (185N) / (9.81 m/s²) = <u>18.858 kilograms of frewium</u> 

-- For its volume, we need to calculate the volume of the displaced water.

The buoyant force is equal to the weight of displaced water, and the
density of water is about 1 gram per cm³.  So the volume of the
displaced water (in cm³) is the same as the number of grams in it.

The weight of the displaced water is 30N, and weight = (mass) (gravity).

           30N = (mass of the displaced water) x (9.81 m/s²)

           Mass = (30N) / (9.81 m/s²) = 3.058 kilograms

           Volume of displaced water = <u>3,058 cm³</u>

Finally, density of the frewium sample = (mass)/(volume)

      Density = (18,858 grams) / (3,058 cm³) = <em>6.167 gm/cm³</em> (rounded)

================================================

I'm thinking that this must  be the hard way to do it,
because I noticed that

       (weight in air) / (buoyant force) =  185N / 30N = <u>6.1666...</u>

So apparently . . .

        (density of a sample) / (density of water) =

                                  (weight of the sample in air) / (buoyant force in water) .

I never knew that, but it's a good factoid to keep in my tool-box.


You might be interested in
When plugging in metric facts, always remember that 1 big unit = # small units. Fill in these facts: 1.________ s= ________μs 2.
balandron [24]

Answer:

1. 1 s = 1 x 10⁶ μs

2. 1 g = 0.001 kg

3. 1 km = 1000 m

4. 1 mm = 1 x 10⁻³ m

5. 1 mL = 1 x 10⁻³ L  

6. 1 g = 100 dg

7. 1 cm = 1 x 10⁻² m

8. 1 ms = 1 x 10⁻³ s

Explanation:

1.

1 x 10⁻⁶ s = 1 μs

(1 x 10⁻⁶ x 10⁶) s = 1 x 10⁶ μs

<u>1 s = 1 x 10⁶ μs</u>

2.

1000 g = 1 kg

1 g = 1/1000 kg

<u>1 g = 0.001 kg</u>

3.

<u>1 km = 1000 m</u>

<u></u>

4.

<u>1 mm = 1 x 10⁻³ m</u>

<u></u>

5.

<u>1 mL = 1 x 10⁻³ L</u>

<u></u>

6.

1 x 10⁻² g = 1 dg

(1 x 10⁻² x 10²) g = 1 x 10² dg

<u>1 g = 100 dg</u>

<u></u>

7.

<u>1 cm = 1 x 10⁻² m</u>

<u></u>

8.

<u>1 ms = 1 x 10⁻³ s</u>

4 0
3 years ago
A motorcycle is following a car that is traveling at constant speed on a straight highway. Initially, the car and the motorcycle
xz_007 [3.2K]

Answer:

a) \Delta{t} = 5.39s

b) the motorcycle travels 155 m

Explanation:

Let t_2-t_1 = \Delta{t}, then consider the equation of motion for the motorcycle (accelerated) and for the car (non accelerated):

v_{m2}=v_0+a\Delta{t}\\x+d=(\frac{v_0+v_{m2}}{2} )\Delta{t}\\v_c = v_0 = \frac{x}{\Delta{t}}

where:

v_{m2} is the speed of the motorcycle at time 2

v_{c} is the velocity of the car (constant)

v_{0} is the velocity of the car and the motorcycle at time 1

d is the distance between the car and the motorcycle at time 1

x is the distance traveled by the car between time 1 and time 2

Solving the system of equations:

\left[\begin{array}{cc}car&motorcycle\\x=v_0\Delta{t}&x+d=(\frac{v_0+v_{m2}}{2}}) \Delta{t}\end{array}\right]

v_0\Delta{t}=\frac{v_0+v_{m2}}{2}\Delta{t}-d \\\frac{v_0+v_{m2}}{2}\Delta{t}-v_0\Delta{t}=d\\(v_0+v_{m2})\Delta{t}-2v_0\Delta{t}=2d\\(v_0+v_0+a\Delta{t})\Delta{t}-2v_0\Delta{t}=2d\\(2v_0+a\Delta{t})\Delta{t}-2v_0\Delta{t}=2d\\a\Delta{t}^2=2d\\\Delta{t}=\sqrt{\frac{2d}{a}}=\sqrt{\frac{2*58}{4}}=\sqrt{29}=5.385s

For the second part, we need to calculate x+d, so you can use the equation of the car to calculate x:

x = v_0\Delta{t}= 18\sqrt{29}=96.933m\\then:\\x+d = 154.933

3 0
3 years ago
A horse is trotting along pulling a sleigh through the snow. To move the 225 kg sleigh straight ahead at a constant speed, the h
RoseWind [281]

Answer:

a) The net force acting on the sleigh is zero because it is moving at a constant speed.

b) F_{fr}= \mu mg = F_{pull}, then \mu = \frac{F_{pull}}{mg} = 0.0557.

5 0
2 years ago
Help please I don't understand this
BARSIC [14]
It's either staying there or is going at the same pace
4 0
3 years ago
The High Speed Industrial Drill With Diameter Of 98 Cm Develops 5.85hp At 1900 Rpm. What Torque And Force Is Applied To The Dril
STatiana [176]

Answer:

The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.

Explanation:

Given:-

- The diameter of the drill bit, d = 98 cm

- The power at which drill works, P = 5.85 hp

- The rotational speed of drill, N = 1900 rpm

Find:-

What Torque And Force Is Applied To The Drill Bit?

Solution:-

- The amount of torque (T) generated at the periphery of the cutting edges of the drilling bit when it is driven at a power of (P) horsepower at some rotational speed (N).

- The relation between these quantities is given:

                         T = 5252*P / N

                         T = 5252*5.85 / 1900

                         T = 16.171 Nm

- The force (F) applied at the periphery of the drill bit cutting edge at a distance of radius from the center of drill bit can be determined from the definition of Torque (T) being a cross product of the Force (F) and a moment arm (r):

                          T = F*r

Where,   r = d / 2

                          F = 2T / d

                          F = 2*16.171 / 0.98

                          F = 33 N

Answer: The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.

4 0
3 years ago
Read 2 more answers
Other questions:
  • In the development of atomic models, it was realized that the atom is mostly empty. Consider a model for the hydrogen atom where
    8·1 answer
  • Who created dogs<br>human<br>nature<br>wolfs<br>nobody
    6·2 answers
  • When fossil fuels are burned, they release oxides of ____________________ and ____________________.
    5·2 answers
  • A simple pendulum, 1.00 m in length, is released from rest when the support string is at an angle of 35.0 from the vertical. Wh
    11·1 answer
  • An atom of sodium-23 (atomic number = 11) has a positive charge of +1. Given this information, how many
    6·1 answer
  • What is the speed of a wave on a string with a wavelength of 1.75 m and a frequency of 2.0 Hz
    11·1 answer
  • Find the volume<br>Length = 23.5cm<br>Breadth =17cm<br>Height =2cm​
    6·1 answer
  • ___________________ is the opposition to the flow of electric charge. (Resistance or Electric power)
    10·2 answers
  • 2.
    12·1 answer
  • A 500-W heating coil designed to operate from 110V is made of Nichrome wire 0.500 mm in diameter. (b) What If? Now consider the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!