*heat transfer energy, As it always flow from higher temperature to lower temperature till it reach the thermal equilibrium.
example: -friction.
- collisions.
- the hot cup which's hotter than your hand✋will transfer heat in your hand. and a cold piece of ice which's colder than your hand to causing the heat transfer out of your hand .
*temperature ️ depends on the move of particle and we have a different shape of motion like:
translational motion.
rotational motion.
vibrational motion.
when the temperature:
increases it has more kinetic energy and faster moving particles and the object expanded which known as (thermal expansion).
decreases it has less kinetic energy and slower moving particles.
As kinetic energy is 1/2 mV².
example: -the mercury in thermometers.
*Absolute zero :
The theoretical temperature at which substances possess no thermal energy, equal to 0 K, −273.15°C, or −459.67°F.
*specific heat "c" :
is essentially a measure of how thermally insensitive a substance is to the addition of energy.
c=Q/m∆T
where Q is energy .
note water has a higher specific heat, and lower temperature.
*conduction <em><u>example</u></em> When the stove is turned on, the skillet becomes very hot due to the conduction of heat from the burner to the skillet.
Answer:
Tangential speed=5.4 m/s
Radial acceleration=
Explanation:
We are given that
Angular speed=2.59 rev/s
We know that
1 revolution=
2.59 rev=
By using 
Angular velocity=
Distance from axis=r=0.329 m
Tangential speed=
Radial acceleration=
Radial acceleration=
Answer:
220 A
Explanation:
The magnetic force on the floating rod due to the rod held close to the ground is F = BI₁L where B = magnetic field due to rod held close the ground = μ₀I₂/2πd where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, I₂ = current in rod close to ground and d = distance between both rods = 11 mm = 0.011 m. Also, I₁ = current in floating rod and L = length of rod = 1.1 m.
So, F = BI₁L
F = (μ₀I₂/2πd)I₁L
F = μ₀I₁I₂L/2πd
Given that the current in the rods are the same, I₁ = I₂ = I
So,
F = μ₀I²L/2πd
Now, the magnetic force on the floating rod equals its weight , W = mg where m = mass of rod = 0.10kg and g = acceleration due to gravity = 9.8 m/s²
So, F = W
μ₀I²L/2πd = mg
making I subject of the formula, we have
I² = 2πdmg/μ₀L
I = √(2πdmg/μ₀L)
substituting the values of the variables into the equation, we have
I = √(2π × 0.011 m × 0.1 kg × 9.8 m/s²/[4π × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2 × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2.2 × 10⁻⁷ H])
I = √(0.0049 × 10⁷kgm²/s²H)
I = √(0.049 × 10⁶kgm²/s²H)
I = 0.22 × 10³ A
I = 220 A
The photon can be absorbed and the energy of the photon is exactly equal to the energy-level difference between the ground state and the level d.