The numerical sum of the degree measures of m ∠DEA and m ∠AEF and m ∠DEF is 360°; The numerical measures of the angles is,
m ∠DEA = 56°
m ∠AEF = 158°
m ∠DEF = 146°
Based on the given data,
m ∠DEA= x + 30,
m ∠AEF= x + 132, and
m ∠DEF= 146 degrees
If the sum of two linear angles is 360° then, they are known as supplementary angles.
∠A + ∠B + ∠C = 360°, (∠A and ∠B and ∠C are linear angles.)
So,
We can write,
m ∠AEF + m ∠DEA + m ∠DEF = 360°
( x + 132) + (x + 30) + 146 = 360°
x + 30 + x + 132 + 146 = 360°
2x + 308 = 360°
2x = 360° - 308
x = 52/2
x =26
Now, we will substitute the value of x = 26° in the ∠DEA and ∠AEF, hence we get:
m ∠DEA = x + 30
m ∠DEA = 26 + 30
m ∠DEA = 56 degrees
Also,
m ∠AEF = x + 132
m ∠AEF = 26 + 132
m ∠AEF = 158
Hence,
m ∠DEA + m ∠AEF + m ∠DEF = 360°
56 + 158 + 146 = 360°
360° = 360°
Therefore,
Therefore, the numerical sum of the degree measures of m ∠DEA and m ∠AEF and m ∠DEF is 360°; The numerical measures of the angles is,
m ∠DEA = 56°
m ∠AEF = 158°
m ∠DEF = 146°
To learn more about information visit Supplementary angles :
brainly.com/question/17550923
#SPJ1
X/-10 = 7
Step 1: Multiply by -10
(x/-10)*-10 = 7*-10
x = -70
If I where you I would think of the value of a triangle then calcualate the answer, I would tell you but I don’t really know hope that helped
Area=side^2
if we say area=y and side=x
y=x^2
an euation is linear if the highest power of the variables is 1
y^1=x^2
2≠1
it is not linear (it's quadratic, fancy term for 2nd degree)
Answer:
15
Step-by-step explanation:
because it the 0 that need to subtract