we are given that
angle(ACF)=90
angle(ACB)=61
sum of all angles along any line is 180
so, we get
angle(ACF)+angle(ACD)=180
we can plug value
90+angle(ACD)=180
angle(ACD)=90
now, we can use formula
angle(ACD)=angle(ACB)+angle(BCD)
now, we can plug values
and we get
90=61+angle(BCD)
90-61=61-61+angle(BCD)
angle(BCD)=29................Answer
Answer:
csc²(x)
Step-by-step explanation:
csc(x) = 1/sin(x)
sin²(x) + cos²(x) = 1
=> cos²(x) = 1 - sin²(x)
cos(2x) = cos²(x) - sin²(x) = (1 - sin²(x)) - sin²(x) =
= 1 - 2×sin²(x)
=> 2×sin²(x) = 1 - cos(2x)
sin²(x) = 1/2×(1-cos(2x))
=> 1 - cos(2x) = 2×(1/2×(1-cos(2x)) = 2×sin²(x)
=> 2 / (1-cos(2x)) = 2 / (2×sin²(x)) = 1/sin²(x) =
= 1/sin(x) × 1/sin(x) = csc(x)×csc(x) = csc²(x)
The answer is d or b it’s bin along time sense I’ve done it
Answer:
x= 5 , for c to be same on each eqn