1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
finlep [7]
3 years ago
15

There are 40 people at Drake’s sweet sixteen party. Drake’s only rule is that everyone in the party must meet and shake each oth

er’s hand. If all40 guest shake each other’s hand once and only once.
1. How many handshakes are there altogether?
2. How did you get your solution?
3. What’s the quickest way to figure this out if Drake invited 1,000 people?
Mathematics
1 answer:
Nonamiya [84]3 years ago
3 0

Answer:

Given:

Total Number of people at the Drake’s sweet sixteen party = 40

Everyone in the party must meet and shake each other’s hand

1) How many handshakes are there altogether?

There was total of 780 handshakes in the party.

2. How did you get your solution:

If you have 7 people, person seven shakes six other hands, person  

six shakes five other hands, person five shakes fours other hands,  

person  ,four shakes three other hands, person three shakes two other hands,  and person two shakes one hand.  Another way to see it is,

Person 7  +person 6 + person 5 + person 4 +person 3 + person 2 +  person 1

= 6+5+ 4+3+2+1

=>21

so similairly in case of 40 persons

= 39+38+37+36+37+36+35+34 .................+3+2+1

=>780

3) What’s the quickest way to figure this out if Drake invited 1,000 people?

People at Party               Number of Handshakes

     2                                                     1

     3                              1 + 2              = 3

     4                            1 + 2 + 3          = 6

     5                          1 + 2 + 3 + 4      = 10

     6                        1 + 2 + 3 + 4 + 5  = 15

     .

     .

     .                                          

     n                              1 + 2 + ...+ (n-1) =  --------     \frac{n(n-1)}{2}

Hence for n persons the number of handshakes will be  \frac{n(n-1)}{2}

So for 1000 persons the number of handshakes will be

=>\frac{1000(1000-1)}{2}

=>\frac{1000(999)}{2}

=>\frac{999000}{2}

=>499,500

                                                     

You might be interested in
What is the value of n?
melamori03 [73]
The answer for this question that needs an answer is n = 5

because 18(n-1) = 9(n+7) implies that 18n - 18 = 9n + 63 which implies that n =5 for the equation to hold true.
6 0
3 years ago
Steve likes to entertain friends at parties with "wire tricks." Suppose he takes a piece of wire 60 inches long and cuts it into
Alex_Xolod [135]

Answer:

a) the length of the wire for the circle = (\frac{60\pi }{\pi+4}) in

b)the length of the wire for the square = (\frac{240}{\pi+4}) in

c) the smallest possible area = 126.02 in² into two decimal places

Step-by-step explanation:

If one piece of wire for the square is y; and another piece of wire for circle is (60-y).

Then; we can say; let the side of the square be b

so 4(b)=y

         b=\frac{y}{4}

Area of the square which is L² can now be said to be;

A_S=(\frac{y}{4})^2 = \frac{y^2}{16}

On the otherhand; let the radius (r) of the  circle be;

2πr = 60-y

r = \frac{60-y}{2\pi }

Area of the circle which is πr² can now be;

A_C= \pi (\frac{60-y}{2\pi } )^2

     =( \frac{60-y}{4\pi } )^2

Total Area (A);

A = A_S+A_C

   = \frac{y^2}{16} +(\frac{60-y}{4\pi } )^2

For the smallest possible area; \frac{dA}{dy}=0

∴ \frac{2y}{16}+\frac{2(60-y)(-1)}{4\pi}=0

If we divide through with (2) and each entity move to the opposite side; we have:

\frac{y}{18}=\frac{(60-y)}{2\pi}

By cross multiplying; we have:

2πy = 480 - 8y

collect like terms

(2π + 8) y = 480

which can be reduced to (π + 4)y = 240 by dividing through with 2

y= \frac{240}{\pi+4}

∴ since y= \frac{240}{\pi+4}, we can determine for the length of the circle ;

60-y can now be;

= 60-\frac{240}{\pi+4}

= \frac{(\pi+4)*60-240}{\pi+40}

= \frac{60\pi+240-240}{\pi+4}

= (\frac{60\pi}{\pi+4})in

also, the length of wire for the square  (y) ; y= (\frac{240}{\pi+4})in

The smallest possible area (A) = \frac{1}{16} (\frac{240}{\pi+4})^2+(\frac{60\pi}{\pi+y})^2(\frac{1}{4\pi})

= 126.0223095 in²

≅ 126.02 in² ( to two decimal places)

4 0
4 years ago
Plz really ned help on this really easy!! simplify: 4(5x + 12) Thank you all in advance!!!
Katarina [22]
4(5x + 12) simplified = 20x + 48
4 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Is 2/5 greater than 2/3? ​
liubo4ka [24]

Answer:

no because 2/3 is greater

5 0
3 years ago
Read 2 more answers
Other questions:
  • The quotient of -15 and w
    7·1 answer
  • Someone please help and let it be the right answer I'm failing math
    7·1 answer
  • Figure ABCD has vertices A(−3, 2), B(2, 2), C(2, −4), and D(−3, −2). What is the area of Figure ABCD? 5 square units 20 square u
    7·1 answer
  • Please find the area of this
    5·1 answer
  • A square piece of cardboard with each side 30 inches long hasa
    6·1 answer
  • Which relationship describes angles 1 and 2?
    7·2 answers
  • A 0.1 significance level is used for a hypothesis test of the claim that when parents use a particular method of gender​ selecti
    10·1 answer
  • The ratio of the circumferences of two circles is 2:3. If the large circle has a radius of 39 cm, what is the radius of the
    5·1 answer
  • For what value of k, do the equations 2x – 3y + 10 = 0 and 3x + ky + 15 = 0 represent coincident lines
    13·1 answer
  • ANSWER ASAP!!!! <br><br> Thank u
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!