Answer:
<u>(A) Plants would probably not have enough nitrogen.</u>
Explanation:
<em>According to the passage, bacteria help us digest our food and make yogurt. But it is the bacteria in the soil specifically that "Cycle nitrogen through the ecosystem, which plants rely on"</em>
This must be a universal indicator, the pH is going down everytime you add more :)
Answer:
The precipitated are option a and d.
Explanation:
2 LiI(aq) +Hg2(NO3)2(aq) → Hg2I2(s) ↓ + 2 LiNO3(aq)
Cation Hg2+ 2 in the presence of iodide, a precipitated is formed.
Zn(s) + 2AgNO3(aq) → 2 Ag(s) ↓ +Zn(NO3)2(aq)
Zinc starts to get rid, and some white particles also stick to it. Afterwards the solution becomes cloudy and a precipitate appears, which is the solid silver
6.022 x 1023 atoms are in 14 grams of NO2
KOH+ HNO3--> KNO3+ H2O<span>
From this balanced equation, we know that 1 mol
HNO3= 1 mol KOH (keep in mind this because it will be used later).
We also know that 0.100 M KOH aqueous
solution (soln)= 0.100 mol KOH/ 1 L of KOH soln (this one is based on the
definition of molarity).
First, we should find the mole of KOH:
100.0 mL KOH soln* (1 L KOH soln/
1,000 mL KOH soln)* (0.100 mol KOH/ 1L KOH soln)= 1.00*10^(-2) mol KOH.
Now, let's find the volume of HNO3 soln:
1.00*10^(-2) mol KOH* (1 mol HNO3/ 1 mol KOH)* (1 L HNO3 soln/ 0.500 mol HNO3)* (1,000 mL HNO3 soln/ 1 L HNO3 soln)= 20.0 mL HNO3 soln.
The final answer is </span>(2) 20.0 mL.<span>
Also, this problem can also be done by using
dimensional analysis.
Hope this would help~
</span>