Using the relationship M1V1 = M2V2 where M1 and M2 are the molar concentrations (mol/L or mmol/ml) and V1 and V2 are the volumes of the solutions, we can arrive at the following answer for the given problem:
<span>15.0M (L of stock solution) = 2.35M (0.25L) *all volumes were converted to liters.
L of stock solution = (2.35*0.25)/15.0
Therefore, 0.0392L or 39.17 ml of stock solution is needed. </span>
I don't think that the whole question is posted here, but if you are looking for a way to balance this equation, I may have the answer. I believe the balanced equation is C5H8+9O2=4H2O+5CO2. If you need the reaction type, the answer is combustion. Hope this helps you.
Answer:
think it's C but my gut is telling me A
Explanation:
Answer: 9.3 x 10^ 18 g CO
Explanation:
Start by knowing that carbon monoxide is the compound CO. To convert molecules to grams, you first need to convert molecules to moles. This can be done using the conversion factor for Avogadro's Number:
(2.0 x 10^5 molecules CO) x 1 mol CO / 6.02 x 10^23 molecules CO
This cancels molecules CO.
Then, you can convert moles to grams, which is your desired quantity. You can find the number of grams for CO by looking at the periodic table and adding together their masses. C = 12 g and O = 16 g. Total of 28 g CO:
(1 mol CO) x 28 g CO / 1 mol CO
This cancels mol CO, which leaves grams CO.
To find the mass you divide multiply volume and density..
Density = 1.79 x 10^-4 Volume = 6.3
(1.79 x 10^-4 )(6.3) = <span>1.1 x 10^-3 g
</span>