To solve the problem you must first know that by keeping the linear moment P1 = P2. You must find P1 from the system and equal it to P2 of the system, from that equation you clear the final velocity 1. Which will result in V1f = 60.16 cm / s to the north.I attach the solution.
Answer:
<h2>537.6 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 84 × 6.4
We have the final answer as
<h3>537.6 N</h3>
Hope this helps you
Gravity affects weight, it does not affect mass. Masses always remain the same. Newton's Second Law of Motion: Force = mass x acceleration The acceleration of an object is: a) directly proportional to the net force acting on the object. ... c) inversely proportional to the mass of the object.
90 kilometers because you need to multiply 40 by 2 and then you get 80 and finally you add 10 and get 90 kilometers
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
The distance between the two positive, two negative, or two minimal points on the waveform is known as the wavelength of the wave. The following formula expresses the relationship between the frequency and wavelength of light:
f = c / λ
where, f = frequency of light
c = speed of light
λ = wavelength of light
Given data = f = 1.72×
Hz
Therefore, λ = 3×
/ 1.72×
λ = 1.74×
m
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
Learn more about light here;
brainly.com/question/15200315
#SPJ4