Answer:
T = 27.92 N
Explanation:
For this exercise let's use Newton's second law
T - W = m a
The weight
W = mg
The acceleration can be found by derivatives
a = dv / dt
v = 2 t + 0.6 t²
a = 2 + 0.6 t
We replace
T - mg = m (2 + 0.6t)
T = m (g + 2 + 0.6 t) (1)
Let's look for the time for the speed of 15 m / s
15 = 2 t + 0.6 t²
0.6 t² + 2 t - 15 = 0
We solve the second degree equation
t = [-2 ±√(4 - 4 0.6 (-15))] / 2 0.6
t = [-2 ±√40] / 1.3 = [-2 ± 6.325] / 1.2
We take the positive time
t = 3.6 s
Let's calculate from equation 1
T = 2.00 (9.8 + 2 + 0. 6 3.6)
T = 27.92 N
Answer:879.29 N-m
Explanation:
Given
mass of first child 
distance of first child from tree is 
tree is inclined at an angle of 
mass of second child 
distance of second child from tree is 
Weight of first child
Weight of second child
Torque of first child weight

Torque of second child weight

Net torque 
Answer:
is the compression in the spring
Explanation:
Given:
- mass of the bullet,

- mass of block,

- stiffness constant of the spring,

- initial velocity of the spring just before it hits the block,

<u>Now since the bullet-mass gets embed into the block, we apply the conservation of momentum as:</u>



Now this kinetic energy of the combined mass gets converted into potential energy of the spring.



is the compression in the spring
They are held together because of Strong Nuclear Force.
The electric output of the plant is 48.19 MW
First we need to calculate the water power, it is given by the formula
WP=ρQgh
Here, ρ=1000 kg/m3 is density of water,Q is the flow rate, g is the gravity, and h is the water head
Therefore, WP=1000*65*9.81*90=57388500 W=57.38 MW
Now the overall efficiency of the hydroelectric power plant is given as
η=
Plugging the values in the above equation
0.84=EP/57.38
EP=48.19 MW
Therefore, the electric output of the plant is 48.19 MW.