Answer: The gravitational
Explanation: The student is pushing the box so u have to have gravitational force so it could move
From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470
Answer:
Explanation:
We can use the conservation of the angular momentum.


Now the Inertia is I(professor_stool) plus mR², that is the momentum inertia of a hoop about central axis.
So we will have:

Now, we just need to solve it for ω.

I hope it helps you!
Radioactive decay in the core releases energy. When the sun matter is heated it reduced in density and rises to the surface of the sun, meaning the energy is transferred to the surface.