Based on the definition of <em>composite</em> figure, the area of the <em>composite</em> figure ABC formed by a semicircle and <em>right</em> triangle is approximately 32.137 square centimeters.
<h3>How to find the area of the composite figure</h3>
The area of the <em>composite</em> figure is the sum of two areas, the area of a semicircle and the area of a <em>right</em> triangle. The formula for the area of the composite figure is described below:
A = (1/2) · AB · BC + (π/8) · BC² (1)
If we know that AB = 6 cm and BC = 6 cm, then the area of the composite figure is:
A = (1/2) · (6 cm)² + (π/8) · (6 cm)²
A ≈ 32.137 cm²
Based on the definition of <em>composite</em> figure, the area of the <em>composite</em> figure ABC formed by a semicircle and <em>right</em> triangle is approximately 32.137 square centimeters.
To learn more on composite figures: brainly.com/question/1284145
#SPJ1

I only know this because I remember the common fractions, and 1/3 is .3333 repeating.
Answer:
x = 7
Step-by-step explanation:
The property of a parallelogram is the opposite sides are congruent, hence
AD = BC ← substitute values
5x + 3 = 38 ( subtract 3 from both sides )
5x = 35 ( divide both sides by 5 )
x = 7
Change each into a mixed number and simplify the mixed number