Answer:
1) It is geometric
a) In each trial you can obtain 11 or obtain something else (and fail)
b) Throw 2 dices and watch if the result is 11 or not
c) The probability of success is 1/18
2) It is not geometric, but binomal.
Step-by-step explanation:
1) This is effectively geometric. When you see the sum of 2 dices, you can separate the result in two different outcomes: when the sum is 11 and when the sum is different from 11.
A trial is constituted bu throwing 2 dices and watching if the sum of the dices is 11 or not.
In order to get 11 you need one 5 in one dice and 1 six in another. As a consecuence, you have 2 favourable outcomes (a 5 in the first dice and a 6 in the second one or the other way around). The total amount of outcomes is 6² = 36, and all of them have equal probability. This means that the probability of success is 2/36 = 1/18.
2) This is not geometric distribution. The geometric distribution meassures how many tries do you need for one success. The amount of success in 10 trias follows a binomial distribution.
Do you mean 'nine and eighty four hundredths' in standard form? If so, it will be:
9.84
Answer:
the answer will be 486 calories
Step-by-step explanation:
mrk me brainliest plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Answer:
trey
Step-by-step explanation:
he reads one page per every 2.5 minutes
Answer: The answers are
(i) The slope of segments DE and AC is not 0.
(ii) The coordinates of D and E were found using the Midpoint Formula.
Step-by-step explanation: We can easily see in the proof that the co-ordinates of D and E were found using the mid-point formula, not distance between two points formula. So, this is the first flaw in the Gina's proof.
Also, we see that the slope of line DE and AC, both are same, not equal to 0 but is equal to

which is 0 only if 
So, this is the second mistake.
Thus, the statements that corrects the flaw in Gina's proof are
(i) The slope of segments DE and AC is not 0.
(ii) The coordinates of D and E were found using the Midpoint Formula.