<span>30.0 ml of 0.15 m K2CrO4 solution will have more potassium ions.
Let's see the relative number of potassium ions for each solution. Since all the measurements are the same, the real difference is the K2CrO4 will only have 2 potassium ions per molecule while the K3PO4 solution will have 3 potassium ions per molecule.
K2CrO4 solution
30.0 * 0.15 * 2 = 9
K3PO4 solution
25.0 * 0.080 * 3 = 6
Since 9 is greater than 6, the K2CrO4 solution will have more potassium ions.</span>
Answer:
When hypercapnia processes occur, where the concentration of carbon dioxide gas increases in the blood, the protonization of the blood increases, this means that the H + ions increase in concentration, thus generating metabolic acidosis.
This metabolic acidosis is regulated by various systems, but the respiratory system collaborates by generating hyperventilation, to increase blood oxygen pressures, decrease CO2 emissions, and indirectly decrease acidity.
Explanation:
This method of regulating the body is crucial, since the proteins in our body will not be altered if they do not happen.
The enzymes, the red globules, and many more fundamental things for life ARE PROTEINS, that in front of acidic media these modify their structure by denaturing themselves and ceasing to fulfill their functions. This is the reason why it seeks to neutralize the blood pH when it comes to an increase in CO2.
Answer:
the wavelength of radiation emitted is 
Explanation:
The energy of the Bohr's hydrogen atom can be expressed with the formula:

For n = 7:


For n = 4


The electron goes from the n = 7 to the n = 4, then :


Wavelength of the radiation emitted:

where;
hc = 1242 eV.nm


Answer:
<em>ii</em><em> </em><em>and</em><em> </em><em>iv</em><em> </em>
Explanation:
atomic mass is the sum of protons and neutrons
protons ( postively charged) usually have the same number like electrons( negatively charged)
The solubility of a sample will DECREASE when the size of the sample increases.
The bigger a substance is, the more will be the particles that make up this substance and the greater the amount of solvent that will be needed to dissolve the substance. Surface area of the substance is also important, a small surface area will impede solubility. Thus, when the size of a sample increases, the solubility decreases.