It is neither.
To be even, f(x) must equal f(-x).
If you substitute -x for x, you'd get
y = (-x)^2 - 2(-x) -8
y = x^2 +2x -8
This is not the same as the original, so this is not even.
To be odd, f(x) must equal -f(-x).
If you take the -x substitution from the last step and then multiply it by -1, you'd have:
y = -1 (x^2 +2x -8)
y = -x^2 -2x +8
This is not the same as the original either.
The function is neither even nor odd.
Answer:
Step-by-step explanation:
To find the inverse function, solve for y:
f(x) is an even function, so f(-x) = f(x). Then the inverse relation is double-valued: for any given y, there can be either of two x-values that will give that result.
___
A function is single-valued. That means any given domain value maps to exactly one range value. The test of this is the "vertical line test." If a vertical line intersects the graph in more than one point, then that x-value maps to more than one y-value.
The horizontal line test is similar. It is used to determine whether a function has an inverse function. If a horizontal line intersects the graph in more than one place, the inverse relation is not a function.
__
Since the inverse relation for the given f(x) maps every x to two y-values, it is not a function. You can also tell this by the fact that f(x) is an even function, so does not pass the horizontal line test. When f(x) doesn't pass the horizontal line test, f^-1(x) cannot pass the vertical line test.
_____
The attached graph shows the inverse relation (called f₁(x)). It also shows a vertical line intersecting that graph in more than one place.
9 x 2 = 18
6 x 3 = 18
and 18 x 1 = 18
Answer:
1/3=33.33%?
Step-by-step explanation:
the only math I see is 1/3 and a random 0 near O's
Answer:
The statement is false
Step-by-step explanation: