Answer: The total number of logs in the pile is 6.
Step-by-step explanation: Given that a stack of logs has 32 logs on the bottom layer. Each subsequent layer has 6 fewer logs than the previous layer and the top layer has two logs.
We are to find the total number of logs in the pile.
Let n represents the total number of logs in the pile.
Since each subsequent layer has 6 fewer logs then the previous layer, so the number of logs in each layer will become an ARITHMETIC sequence with
first term, a = 32 and common difference, d = -6.
We know that
the n-th term of an arithmetic sequence with first term a and common difference d is
Since there are n logs in the pile, so we get
Thus, the total number of logs in the pile is 6.
S = n(a1 + an)/2
2S = n(a1 + an)
2S = na1 + nan
nan = 2S - na1
an = (2S - n a1)/n
45 degrees is the answer to your problem