1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
3 years ago
14

The random variable X measures the concentration of ethanol in a chemical solution, and the random variable Y measures the acidi

ty of the solution. They have a joint probability density function f (x, y) = A (20 - x - 2y), 0 lessthanorequalto x lessthanorequalto 5, 0 lessthanorequalto y lessthanorequalto 5 and f (x, y) = 0 elsewhere. (a) What is the value of A? (b) What is P (1 lessthanorequalto X lessthanorequalto 2, 2 lessthanorequalto Y lessthanorequalto 3)? (c) Construct the marginal probability density functions for X and Y. (d) Are the ethanol concentration and the acidity independent? (e) What are the expectation and the variance of the ethanol concentration? (f) What the expectation and the variance of the acidity? (g) If the ethanol concentration is 3, what is the conditional probability density function of the acidity? (h) What is the covariance between the ethanol concentration and the acidity? (i) What is the correlation between the ethanol concentration and the acidity?
Mathematics
1 answer:
docker41 [41]3 years ago
3 0

Answer:

My explanation is too long so, I had to limit my characters

Find answers within explanation.

Step-by-step explanation:

Given

f (x, y) = A (20 - x - 2y), 0 ≤ x ≤ 5, 0 ≤ y ≤ 5 and f (x, y) = 0 elsewhere.

(a) To solve for A,the joint probability density function must satisfy the following condition

∫∫f(x,y) = 1

So, we have

∫∫ A (20 - x - 2y) dydx.{0,5}{0,5} = 1

First, we integrate with respect to y

∫[∫A (20 - x - 2y){0,5}dy]dx{0,5} = 1

A∫[∫ (20 - x - 2y){0,5}dy]dx{0,5} = 1

A∫[(20y - xy - y²){0,5}] dx {0,5} = 1

A∫[(20(5) - x(5) - (5)²)] dx{0,5} = 1

A∫[(100 - 5x - 25)] dx {0,5} = 1

A∫[(75- 5x)] dx {0,5} = 1

Then we differentiate with respect to x

A[(75x- 5x²/2)] {0,5} = 1

A[(75(5)- 5(5)²/2)] = 1

A(375 - 125/2)= 1

625A/2 = 1

625A = 2

A = 2/625

b. Here we have

∫∫ A (20 - x - 2y) dydx.{2,3}{1,2} where A = 2/625

First, we integrate with respect to y

∫[∫A (20 - x - 2y){2,3}dy]dx{1,2}

A∫[∫ (20 - x - 2y){2,3}dy]dx{1,2}

A∫[(20y - xy - y²){2,3}] dx {1,2}

A∫[(20(3) - x(3) - (3)²) - (20(2) - x(2) - (2)²] dx{1,2}

A∫[(60 - 3x - 9) - (40 - 2x - 4)] dx {1,2}

A∫[(20- x - 5)] dx {1,2}

A∫[(15 - x)] dx {1,2}

Then we differentiate with respect to x

A[(15x- x²/2)] {1,2}

A[(15(2)- (2)²/2) - (15(1) - 1²/2]

A(28 - 29/2)

A(27/2) ------ Substitute 2/625 for A

2/625 * 27/2

27/625

So, P (1 ≤ X ≤ 2, 2 ≤ Y ≤ 3) = 27/625

c. Calculating the marginal probability density function for X;

This is given by

fx(x) = ∫ f(x,y) dy

Where f(x,y) = f (x, y) = A (20 - x - 2y), 0 ≤ y ≤ 5 and A = 2/625

So, we have

fx(x) = ∫ A (20 - x - 2y) dy {0,5}

A ∫(20 - x - 2y) dy {0,5}

Integrate with respect to y

A (20y - xy - y²) {0,5}

A(20(5) - x(5) - 5²)

A(100 - 5x - 25)

A(75-5x)

A * 5(15-x)

5A(15-x)

5 * 2/625 * (15 - x)

2/125 * (15 - x)

(30 - 2x)/125

So, fx(x) = (30 - 2x)/125

Calculating the marginal probability density function for Y;

This is given by

fy(y) = ∫ f(x,y) dx

Where f(x,y) = f (x, y) = A (20 - x - 2y), 0 ≤ x ≤ 5 and A = 2/625

So, we have

fy(y) = ∫ A (20 - x - 2y) dx {0,5}

A ∫(20 - x - 2y) dx {0,5}

Integrate with respect to x

A (20x - x²/2 - 2xy) {0,5}

A(20(5) - 5²/2 - 2*5y)

A(100 - 25/2 - 10y)

A(175/2 - 10y)

A * (175 - 20y)/2

2/625 * (175 - 20y)/2

(175 - 20y)/625

(35 - 4y)/125

So, fy(y) = (35 - 4y)/125

d. If the product of the marginal distribution of variables X and Y emails the joint probability density function, then they are independent.

Mathematically, f(x,y) = fx(x) * fy(y) for all values of x and y

Let x∈(0,5) and y∈(0,5)

Then

f(x,y) ≠ fx(x) * fy(y)

So, x and y are not independent

e. Here, we're asked to find E(x) and Var(x)

Calculating E(x)

E(x) = ∫xfx(x) dx

Where fx(x) = (30 - 2x)/125 for 0 ≤ x ≤ 5

So, E(x) = ∫x (30 - 2x)/125 dx {0,5}

1/125 ∫ x(30-2x) dx {0,5}

1/125∫30x - 2x² dx {0,5}

1/125 (15x² - 2x³/3) {0,5}

1/125(15(5)² - 2(5)³/3)

1/125(375-250/3)

1/125(875)

7/3

So, E(x) = 7/3

Var(x) = E(x²) - (E(x))²

Calculating E(x²)

E(x²) = ∫x²fx(x) dx

Where fx(x) = (30 - 2x)/125 for 0 ≤ x ≤ 5

So, E(x²) = ∫x² (30 - 2x)/125 dx {0,5}

1/125 ∫ x ²(30-2x) dx {0,5}

1/125∫30x² - 2x³ dx {0,5}

1/125 (10x³ - ½x⁴) {0,5}

1/125(10(5)³ - ½(5)⁴)

1/125(1250 - 625/2)

1/125(1875/2)

E(x²) = 15/2

So,Var(x) = E(x²) - (E(x))² becomes

Var(x) = 15/2 - (7/3)²

Var(x) = 15/2 - 49/9

Var(x) = (135 - 98)/9

Var(x) = 37/18

f. Here, we're asked to find E(y) and Var(y)

Calculating E(y)

E(y) = ∫yfy(y) dy

Where fy(y) = (35 - 4y)/125 for 0 ≤ y ≤ 5

So, E(y) = ∫y (35 - 4y)/125 dy {0,5}

1/125 ∫ y(35 - 4y) dy {0,5}

1/125∫35y - 4y² dy {0,5}

1/125 (35y²/2 - 4y³/3) {0,5}

1/125(35(5)²/2 - 4(5)³/3)

1/125(875/2 - 500/3)

7/2 - 4/3

(21 - 8)/6

So, E(y) = 13/6

Var(y) = E(y²) - (E(y))²

Calculating E(x²)

E(y²) = ∫y²fy(y) dy

Where fy(y) = (35 - 4y)/125 for 0 ≤ y ≤ 5

So, E(y²) = ∫y² (35 - 4y)/125 dy {0,5}

1/125 ∫ y²(35 - 4y) dy {0,5}

1/125∫35y² - 4y³ dy {0,5}

1/125 (35y³/3 - y⁴) {0,5}

1/125(35(5)³/3 - (5)⁴)

1/125(4375/3 - 625)

35/3 - 5

(35 - 15)/3

E(y²) = 20/3

So,Var(y) = E(y²) - (E(y))² becomes

Var(y) = 20/3 - (13/6)²

Var(y) = 71/36

g. Here, we're asked to solve for

fy|x = x(y).

This can be solved using the following

fy|x = x(y) = f(x,y)/fx(x)

So, fy|x = x(y) = f(x,y)/fx(x)

fy|x = 3(y) = f(3,y)/fx(3)

Let y∈(0,5); so, we have

fy|x = x(y) = A(20-3-2y)/(30-(2*3)/125)

fy|x = x(y) = 125A(17-2y)/24

Substitute 2/625 for A

fy|x = x(y) = (17-2y)/60

h. Formula for Covariance is

Cov(X,Y) = E(XY) - E(X)E(Y)

Calculating E(XY)

E(XY) = ∫∫xy f(x,y) dy dx

∫∫ xy * A(20-x-2y) dy dx {0,5}{0,5}

A∫∫ xy * (20-x-2y) dy dx {0,5}{0,5}

A∫∫ 20xy - x²y -2xy² dy dx {0,5}{0,5}

First, we integrate with respect to y

A∫10xy² - x²y²/2 - 2xy³/3 {0,5} dx {0,5}

A∫10x(5²) - x²(5²)/2 - 2x(5³)/3 dx {0,5}

A∫250x - 25x²/2 - 250x/3 dx {0,5}

A∫500x/3 - 25x²/2 dx {0,5}

Then we integrate with respect to x

A(500x²/6 - 25x³/6) {0,5}

A(500(5)²/6 - 25(5)³/6)

A(12500/6 - 3125/6)

A(9375/6)

Substitute 2/625 for A

2/625 * 9375/6

E(XY) = 5

So, Cov(X,Y) = 5 - 7/3*13/6

Cov(X,Y) = -1/18

i. Correlation is calculated as follows;

Cor(x,y) = Cov(x,y)/√(Var(y)*(Var(x)

Cor(x,y) = (-1/18)/√(71/36 *37/18)

Cor(x,y) = -0.0276

You might be interested in
Determine the measure of the unknown angle in each triangle. What are B and R?
ollegr [7]

Answer:

r = 14 i think

Step-by-step explanation:

take the lowest degree angle and subtract it from the higher one and BOOM u got ur answer :) please mark me brainliest I need it to rank up

3 0
3 years ago
Read 2 more answers
Click once to choose an answer. Click again to change your answer. Choose all that locate the ordered pair in the correct quadra
forsale [732]

Answer:

Quadrant\ IV = (5, -3)

Quadrant\ I = (9, 11)

Quadrant\ II = (-1, 3)

Quadrant\ III = (-2, -4)

Step-by-step explanation:

Given

Quadrant\ IV = (5, -3)

Quadrant\ II  = (-4, -8)

Quadrant\ I = (9, 11)

Quadrant\ II = (-1, 3)

Quadrant\ III = (-2, -4)

Required

Determine which coordinate fall in the right quadrant

First, we split the each quadrant into x and y axis

In the first:

x and y is +

In the second:

x is - and y is +

In the third

x and y are -

In the fourth

x is + and y is -

Comparing the given coordinates to their respective quadrants, base on the conditions stated above

Quadrant\ IV = (5, -3)  is correct

Quadrant\ I = (9, 11) is correct

Quadrant\ II = (-1, 3) is correct

Quadrant\ III = (-2, -4) is correct

Quadrant\ II  = (-4, -8) is incorrect

3 0
3 years ago
Maria took a test that had 20 questions. She got 4/5 of the questions correct. How many questions did Maria get correct?
Leni [432]
4     x
5     20

80/5=16

20(total questions)/5(total questions, simplified)=4
Multiply 4 by 4(correct questions).
The second method is better for a student in elementary!
7 0
3 years ago
Read 2 more answers
En un censo realizado en escuelas de enseñanza media superior de un municipio, participaron 8 escuelas que indicaron la cantidad
Harrizon [31]

Answer:

In a census carried out in upper secondary schools in a municipality, 8 schools participated, indicating the number of students who graduated in a given year. The data is shown in the following graph and according to this, what was the average number of graduated students?

Step-by-step explanation:

This is what it says in english

7 0
3 years ago
1. A box of cookies has 6 1/4 servings. If Carol buys 4 boxes of cookies, how
Naddika [18.5K]
The answer is C. 6 times 4 is 24 and 1/4 times 4 is 1. therefore 24 + 1 = 25
4 0
4 years ago
Read 2 more answers
Other questions:
  • If ABC = MNO and MNO = PQR then ABC by the transitive property
    14·2 answers
  • A family drove 180 miles to disneyland. If they left at 10:30
    8·1 answer
  • X Y
    15·2 answers
  • Solve for x using the Quadratic Formula: x2 + 4x + 4 = 0<br> -b + Vb2 - 4ac<br> x=<br> 2a
    9·1 answer
  • Simplify the expression. (x^1/15)^5
    11·1 answer
  • Below, the two-way table is given for a
    13·2 answers
  • At the Planetarium, tickets cost $10 for adults and $5.50 for kids under 12. How
    8·1 answer
  • The area of a circle is 25.12 square yards. If the dimensions of the circle are tripled, what will be the area of the new figure
    9·1 answer
  • What is the value of X?
    10·1 answer
  • How to do this and the answers.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!