Through the compact molecules of a solid sound would move at its slowest.
Through the loose molecules of a liquid sound would move moderately.
Through the very spacious molecules of a gas sound would move very fast.
Answer:
a) dh/dt = -44.56*10⁻⁴ cm/s
b) dr/dt = -17.82*10⁻⁴ cm/s
Explanation:
Given:
Q = dV/dt = -35 cm³/s
R = 1.00 m
H = 2.50 m
if h = 125 cm
a) dh/dt = ?
b) dr/dt = ?
We know that
V = π*r²*h/3
and
tan ∅ = H/R = 2.5m / 1m = 2.5 ⇒ h/r = 2.5
⇒ h = (5/2)*r
⇒ r = (2/5)*h
If we apply
Q = dV/dt = -35 = d(π*r²*h/3)*dt
⇒ d(r²*h)/dt = 3*35/π = 105/π ⇒ d(r²*h)/dt = -105/π
a) if r = (2/5)*h
⇒ d(r²*h)/dt = d(((2/5)*h)²*h)/dt = (4/25)*d(h³)/dt = -105/π
⇒ (4/25)(3*h²)(dh/dt) = -105/π
⇒ dh/dt = -875/(4π*h²)
b) if h = (5/2)*r
Q = dV/dt = -35 = d(π*r²*h/3)*dt
⇒ d(r²*h)/dt = d(r²*(5/2)*r)/dt = (5/2)*d(r³)/dt = -105/π
⇒ (5/2)*(3*r²)(dr/dt) = -105/π
⇒ dr/dt = -14/(π*r²)
Now, using h = 125 cm
dh/dt = -875/(4π*h²) = -875/(4π*(125)²)
⇒ dh/dt = -44.56*10⁻⁴ cm/s
then
h = 125 cm ⇒ r = (2/5)*h = (2/5)*(125 cm)
⇒ r = 50 cm
⇒ dr/dt = -14/(π*r²) = - 14/(π*(50)²)
⇒ dr/dt = -17.82*10⁻⁴ cm/s
D), increases. The object absorbs light energy which in turn (energy is energy) usually involves absorbing heat as well.
Answer:
8 m³
282.3 ft³
Explanation:
The volume of each box is width times length times depth:
V = (1 m) (2 m) (1 m)
V = 2 m³
There are four boxes, so the total volume is:
4V = 8 m³
Converting to cubic feet:
8 m³ × (3.28 ft / m)³
= 282.3 ft³