Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Answer:
The weight lifter would not get past this sticking point.
Explanation:
Generally torque applied on the weight is mathematically represented as
T = F z
To obtain Elbow torque we substitute 4000 N for F (the force ) and 2cm
for z the perpendicular distance
So Elbow Torque is 

To obtain the torque required we substitute 300 N for F and 30cm 
So the Required Torque is 

Now since
it mean that the weight lifter would not get past this sticking point
<span>a. the amount of matter in a given volume </span>
here we will use the concept of Newton's III law
as per Newton's III law the impulse given to the ball is same as the impulse lost by the bat
So here we will say
impulse gain by the ball = impulse lost by the bat

given that


For ball the change in speed will be

now from above equation


so speed of bat will decrease by 6.72 mph
Answer:
La entropía del vapor de mercurio cambia en 214.235 joules por Kelvin.
Explanation:
Por definición de entropía (
), medida en joules por Kelvin, tenemos la siguiente expresión:
(1)
Donde:
- Ganancia de calor, en joules.
- Temperatura del sistema, en Kelvin.
Ampliamos (1) por la definición de calor latente:
(1b)
Donde:
- Masa del sistema, en kilogramos.
- Calor latente de vaporización, en joules
Puesto que no existe cambio en la temperatura durante el proceso de vaporización, transformamos la expresión diferencial en expresión de diferencia, es decir:

Como vemos, el cambio de la entropía asociada al cambio de fase del mercurio es directamente proporcional a la masa del sistema. Si tenemos que
,
and
, entonces el cambio de entropía es:


La entropía del vapor de mercurio cambia en 214.235 joules por Kelvin.