Not if both speeds are in the same units.
However, if the 254 is 'centimeters per time' and the 100 is 'inches per time',
then the speeds are equal.
Answer:
Distance traveled will be 5.6307 m
Explanation:
Time t = 3 sec
We have given force F = 25 N
We know that force is given by F = ma
So ma = 25 -----------eqn 1
Weight is given by W = 196 N
We know that weight is given by W = mg
So mg = 196 -----------------eqn 2
From equation 1 and equation 2 

Initial velocity is given as 0 so u = 0 m/sec
From second equation of motion 
a) It is absolute, so it does not change.
b) Inertial ones.
c) Inside the train the time will slow down relatively to the outside clock. So if one travel at nearly the speed if light for 2 hours on his clock, for outdoor observers it will look like 3 hours.
Explanation:
It is given that,
The acceleration of the toboggan, 
Initial speed of the toboggan, u = 0
We need to find the distance covered by the toboggan. Using the second equation of motion as :

At t = 1 s


At t = 2 s


At t = 3 s


Hence, this is the required solution.
Answer:
the coefficient of volume expansion of the glass is 
Explanation:
Given that:
Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³
temperature of the glass flask and mercury= 1.00° C
After heat is applied ; the final temperature = 52.00° C
Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C
Volume of the mercury overflow = 8.50 cm^3 = 8.50 × 10⁻⁶ m³
the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K
The increase in the volume of the mercury = 10⁻³ m³ × 51.00 × 1.80 × 10⁻⁴
The increase in the volume of the mercury = 
Increase in volume of the glass = 10⁻³ × 51.00 × 
Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask
the mercury overflow = 






Thus; the coefficient of volume expansion of the glass is 