a) The total monthly cost is the sum of the fixed cost and the variable cost. If q represents the number of cones sold in a month, the monthly cost c(q) is given by
c(q) = 300 + 0.25q
b) If q cones are sold for $1.25 each, the revenue is given by
r(q) = 1.25q
c) Profit is the difference between revenue and cost.
p(q) = r(q) - c(q)
p(q) = 1.00q - 300 . . . . . . slope-intercept form
d) The equation in part (c) is already in slope-intercept form.
q - p = 300 . . . . . . . . . . . . standard form
The slope is the profit contribution from the sale of one cone ($1 per cone).
The intercept is the profit (loss) that results if no cones are sold.
e) With a suitable graphing program either form of the equation can be graphed simply by entering it into the program.
Slope-intercept form. Plot the intercept (-300) and draw a line with the appropriate slope (1).
Standard form. It is convenient to actually or virtually convert the equation to intercept form and draw a line through the points (0, -300) and (300, 0) where q is on the horizontal axis.
f) Of the three equations created, we presume the one of interest is the profit equation. Its domain is all non-negative values of q. Its range is all values of p that are -300 or more.
g) The x-intercept identified in part (e) is (300, 0). You need to sell 300 cones to break even.
h) Profit numbers are
425 cones: $125 profit
550 cones: $250 profit
700 cones: $400 profit
Answer:
D
Step-by-step explanation:
you can use the slope intercept form: y = mx + b.
y = y cooordinate
m = slope
x = x coordinate
b = y intercept
the y intercept is 4.
the point (1, 7) is what we're going to use.
so the new equation is
7 = m + 4 (it would be 1m, but i rewrote it to be mathmatically correct)
subtract 4 from both sides, you should have 3 = m.
the slope is 3
For this case we have an equation of the form:
Where,
A: original price
b: growth rate
x: number of years
Substituting values we have:
Answer:
the value of the antique clock, and, in dollars, after x years is:

B.
Because it reflects over
Let x = Initial Price
If we increase x by 5%, we are adding 0.05x
Therefore, the new price = x + 0.05x = 1.05x
If the ticket has increased by £2.30, £2.30 is 5% of the initial price, or 0.05x
0.05x = 2.30
x = 2.30/0.05
x = 46
Therefore, the price of the ticket before the increase was £46
You can also check this backwards by doing 46*0.05 = 2.30