1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
3 years ago
13

Given the line -9x-6y=18. Find the slope

Mathematics
1 answer:
SashulF [63]3 years ago
7 0

Answer:

slope = - \frac{3}{2}

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

Rearrange - 9x - 6y = 18 into this form

Add 9x to both sides

- 6y = 9x + 18 ( divide all terms by - 6 )

y = - \frac{3}{2} x - 3 ← in slope- intercept form

with slope m = - \frac{3}{2}

You might be interested in
Due this Thursday.. help pls.​
kobusy [5.1K]
2004 was a leap year so 29/366=7.9%
4 0
3 years ago
Can you comment the answer because for some reason it won't show up :)​
Finger [1]

D. 7 1/5

(4/5) *9= 7.2

7.2= 7 1/5

5 0
3 years ago
ILL MARK BRAILIEST!!!<br><br> what is the solution to the system of equations shown below?
Otrada [13]

Answer:

(3, -2)

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Use the method of undetermined coefficients to solve the given nonhomogeneous system. x' = −1 5 −1 1 x + sin(t) −2 cos(t)
AlekseyPX

It looks like the system is

x' = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}

Compute the eigenvalues of the coefficient matrix.

\begin{vmatrix} -1 - \lambda & 5 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda^2 + 4 = 0 \implies \lambda = \pm2i

For \lambda = 2i, the corresponding eigenvector is \eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top such that

\begin{bmatrix} -1 - 2i & 5 \\ -1 & 1 - 2i \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

Notice that the first row is 1 + 2i times the second row, so

(1+2i) \eta_1 - 5\eta_2 = 0

Let \eta_1 = 1-2i; then \eta_2=1, so that

\begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} = 2i \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}

The eigenvector corresponding to \lambda=-2i is the complex conjugate of \eta.

So, the characteristic solution to the homogeneous system is

x = C_1 e^{2it} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix}

The characteristic solution contains \cos(2t) and \sin(2t), both of which are linearly independent to \cos(t) and \sin(t). So for the nonhomogeneous part, we consider the ansatz particular solution

x = \cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}

Differentiating this and substituting into the ODE system gives

-\sin(t) \begin{bmatrix} a \\ b \end{bmatrix} + \cos(t) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ -1 & 1 \end{bmatrix} \left(\cos(t) \begin{bmatrix} a \\ b \end{bmatrix} + \sin(t) \begin{bmatrix} c \\ d \end{bmatrix}\right) + \begin{bmatrix} \sin(t) \\ -2 \cos(t) \end{bmatrix}

\implies \begin{cases}a - 5c + d = 1 \\ b - c + d = 0 \\ 5a - b + c = 0 \\ a - b + d = -2 \end{cases} \implies a=\dfrac{11}{41}, b=\dfrac{38}{41}, c=-\dfrac{17}{41}, d=-\dfrac{55}{41}

Then the general solution to the system is

x = C_1 e^{2it} \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix} + \dfrac1{41} \cos(t) \begin{bmatrix} 11 \\ 38 \end{bmatrix} - \dfrac1{41} \sin(t) \begin{bmatrix} 17 \\ 55 \end{bmatrix}

7 0
2 years ago
What is the value of (-1/5) + 7/4 (relevant work)
Ber [7]

Answer: 31/20

Step-by-step explanation:

To add fractions, find the LCD and then combine.

8 0
3 years ago
Other questions:
  • Amanda delivers 56 meals in 4 hours. At this rate, how many meals can she deliver is 7 hours?
    8·2 answers
  • Please help! Just with Part B...
    6·1 answer
  • The probability of drawing two red candies without replacement is 1335 , and the probability of drawing one red candy is 25 . Wh
    12·2 answers
  • Please help I don’t want to give up it’s getting hard
    9·2 answers
  • Number between <br> 61<br> and <br> 107<br> that is a multiple of <br> , 4, 6<br> and <br> 9<br> .
    9·1 answer
  • What is 3(x+3)+7x= ?
    8·2 answers
  • Can someone help me solve these problems?
    12·1 answer
  • The Dittany family's vegetable garden is shaped like a scalene triangle. Two of the sides measure 6 feet and 10 feet. Which coul
    13·1 answer
  • HELPPP PLEASE! I NEED THIS DONE TODAY!
    9·1 answer
  • Find the diameter of the circle with a circumference of 27 centimeters. Use 3.14 for π. Round to the nearest tenth.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!