Answer:
4050 mL
Explanation:
Given data:
Mass of glucose = 150.1 g
Molarity of solution = 0.205 M
Volume of solution = ?
Solution:
Molarity = number of moles of solute / L of solution.
Now we will calculate the moles of sugar first.
Number of moles = mass/ molar mass
Number of moles = 150.1 g/ 180.156 g/mol
Number of moles = 0.83 mol
Now we will determine the volume:
Molarity = number of moles of solute / L of solution.
0.205 M = 0.83 mol / L of solution.
L of solution = 0.83 mol / 0.205 M
L of solution = 4.05 L
L to mL conversion:
4.05 L × 1000 mL / 1 L = 4050 mL
Answer:
6
Explanation:
Oxidation reaction is defined as the chemical reaction in which an atom looses its electrons. The oxidation number of the atom gets increased during this reaction.
Reduction reaction is defined as the chemical reaction in which an atom gains electrons. The oxidation number of the atom gets reduced during this reaction.
For the given chemical reaction:
The half cell reactions for the above reaction follows:
Oxidation half reaction:
Reduction half reaction:
Magnesium is loosing 2 electrons to form the magnesium cation. Thus, it is getting oxidized. Aluminum anion is gaining 3 electrons to form Aluminum. Thus, it is getting reduced.
Thus, balancing the half-reactions as:-
Oxidation half reaction:
Reduction half reaction:
Thus, total number of electrons transferred = 6
Answer:
4g/mol
Explanation:
Firstly, we can get the number of moles of the gas present using the ideal gas equation.
PV = nRT
Here:
P = 886 torr
V = 224ml = 224/1000 = 0.224L
T = 55 degrees celcius= 55+ 273.15 = 328.15K
R = molar gas constant = 62.36 L⋅Torr⋅K−1⋅mol−1
n = PV/RT
n = (886 * 0.224)/(62.36 * 328.15)
n = 0.009698469964 mole
Now to get the molar mass, this is mathematically equal to the mass divided by the number of moles. We have the mass and the number of moles, remaining only the molar mass.
First, we convert the mass to g and that is 38.8/1000 = 0.0388
The molar mass is thus 0.0388/0.009698469964 = 4g/mol
Answer:
A balanced chemical equation must always include coefficients on every reactant and product.
Explanation:
<u>A balanced chemical equation does not need to include coefficients on every reactant and product.</u>
For example, below is a balanced chemical equation in which the reactants and the products have no coefficients whatsoever:
NaOH(aq) + HCl (aq) -----> NaCl (s) + H2O (l)
<em>Of course, a properly written chemical equation must include the states of matter of all the substances in the reaction and the number of atoms of each element must balance both in the reactant and product sides of the equation. Generally, a balanced chemical equation must obey the law of conservation of matter which opines that matter can neither be created nor destroyed but can only be converted from one form to another. </em>
Hence, that a balanced chemical equation must always include coefficients on every reactant and product is not true.
Answer:
Planetary orbits are all nearly circular , comet orbits are highly excentric . ... This means that planets stay more or less at the same distance from the sun, while comets travel as far out as beyond Neptune, and can travel as far in as Mercury.