<span>The half-life of Carbon 14 and radionuclides are used to estimate the absolute (versus relative) age of pre-history items </span>
<em><u>Protons</u></em><em><u> = Positive Charge</u></em>
<em><u>Neutrons</u></em><em><u> = Neutral Charge/No Charge</u></em>
<em><u>Electrons</u></em><em><u> = Negative Charge</u></em>
<em>This one's simple: electrons have a negative charge, protons have a positive charge and neutrons — as the name implies — are neutral.</em>
<u><em>Protons</em></u>
<em>Elements are differentiated from each other by the number of protons within their nucleus. For example, carbon atoms have six protons in their nucleus. Atoms with seven protons are nitrogen atoms. The number of protons for each element is known as the atomic number and does not change in chemical reactions. In other words, the elements at the beginning of a reaction -- known as the reactants -- are the same elements at the end of a reaction -- known as the products.</em>
<em />
<em><u>Neutrons</u></em>
<em>Although elements have a specific number of protons, atoms of the same element may have different numbers of neutrons and are termed isotopes. For example, hydrogen has three isotopes, each with a single proton. Protium is an isotope of hydrogen with zero neutrons, deuterium has one neutron, and tritium has two neutrons. Although the number of neutrons may differ between isotopes, the isotopes all behave in a chemically similar manner.</em>
<em />
<u><em>Electrons</em></u>
<em>Electrons are not bound as tightly to the atom as protons and neutrons. This allows electrons to be lost, gained or even shared between atoms. Atoms that lose an electron become ions with a +1 charge, since there is now one more proton than electrons. Atoms that gain an electron have one more electron than protons and become a -1 ion. Chemical bonds that hold atoms together to form compounds result from these changes in the number and arrangement of electrons.</em>
Boiling point is the temperature at which a liquid boils and turns to a gas.
Hope this helps!! (:
Answer:
The concentration of acetic acid is 8.36 M
Explanation:
Step 1: Data given
Volume of acetic acid = 1.00 mL = 0.001 L
Volume of NaOH = 32.40 mL = 0.03240 L
Molarity of NaOH = 0.258 M
Step 2: The balanced equation
CH3COOH + NaOH → CH3COONa + H2O
Step 3: Calculate the concentration of the acetic acid
b*Ca*Va = a*Cb*Vb
⇒with b = the coefficient of NaOH = 1
⇒with Ca = the concentration of CH3COOH = TO BE DETERMINED
⇒with Va = the volume of CH3COOH = 1.00 mL = 0.001L
⇒with a = the coefficient of CH3COOH = 1
⇒with Cb = the concentration of NaOH = 0.258 M
⇒with Vb = the volume of NaOH = 32.40 mL = 0.03240 L
Ca * 0.001 L = 0.258 * 0.03240
Ca = 8.36 M
The concentration of acetic acid is 8.36 M
Your answer is: C. Neutrons are inside the nucleus of a atom