Answer:
B=0.2T
Explanation:
given required solution
l=4m B=? <em>F</em><em>=</em><em>BIL</em>
i=0.5A B=F/IL
F=0.4N B=0.4N/0.5A*4m
B=0.4/2=0.2T
No, that's silly.
You've got your Pfund series where electrons fall down to the 5th level,
your Brackett series where they fall to the 4th level, and your Paschen
series where they fall to the 3rd level. All of those transitions ploop out
photons at Infrared wavelengths.
THEN next you get your Balmer series, where the electrons fall in
to the 2nd level. Most of those are at visible wavelengths, but even
a few of the Balmer transitions are in the Ultraviolet.
And then there's the Lyman series, where electrons fall all the way
down to the #1 level. Those are ALL in the ultraviolet.
Options:
(a) Total kinetic energy of the system remains constant.
(b) Total momentum of the system is conserved.
(c) Both A and B are true.
(d) Neither A nor B are true.
Answer:
(b) Total momentum of the system is conserved.
Explanation:
An inelastic collision is a type of collision in which momentum is conserved and kinetic energy is not conserved. That is, there is loss of kinetic energy.
In an inelastic collision:
Total momentum before collision = Total momentum after collision
An example of inelastic collision is seen in the ballistic pendulum, The ballistic pendulum is a device in which a projectile such as a bullet is fired into a suspended heavy wooden stationary block.