<span>It tells how hot it really feels when the relative humidity is factored in with the actual air temperature.
hope this helps</span>
The charge on the electron is 1.6x10^-19C. So, 10^24 of them will be a charge of 1.6x10^5C, F = q1xq2/[(4pi epsilon nought)r^2]
-- the big flash of light and heat coming out of the head
of a match when it gets hot enough;
-- the explosion of a tiny bit of gunpowder that can send
a bullet many miles;
-- the energy captured from a few drops of burning gasoline
that moves a car;
-- the energy in the carbohydrates you eat that is used
to move you around;
1) First of all, let's find the resistance of the wire by using Ohm's law:

where V is the potential difference applied on the wire, I the current and R the resistance. For the resistor in the problem we have:

2) Now that we have the value of the resistance, we can find the resistivity of the wire

by using the following relationship:

Where A is the cross-sectional area of the wire and L its length.
We already have its length

, while we need to calculate the area A starting from the radius:

And now we can find the resistivity:
C., used in power plants I think.