<h3>
Answer:</h3>
2Fe(HCO₃)₃ → Fe₂(CO₃)₃ + 3H₂O + 3CO₂
<h3>
Explanation:</h3>
- A decomposition reaction is one in which a large compound is broken down into smaller compounds or individual elements.
- The decomposition reaction Iron (iii) hydrogen carbonate yield iron (iii) carbonate, water and carbon dioxide.
Fe(HCO₃)₃ → Fe₂(CO₃)₃ + H₂O + CO₂
- A balanced equation is the one in which the number of atoms of each element are equal on both side of the equation.
- Therefore; the balanced equation for the decomposition of Iron (iii) hydrogen carbonate is given by;
2Fe(HCO₃)₃ → Fe₂(CO₃)₃ + 3H₂O + 3CO₂
Nitrogen followed by oxygen
<h3>
Answer:</h3>
#1. 50 g
#2. 25 g
#3. 4 half lives
<h3>
Explanation:</h3>
<u>We are given;</u>
- Original mass of a radioisotope as 100 g
- Half life of the radioisotope as 10 years
We need to answer the questions:
#a. Mass remaining after 10 years
Using the formula;
Remaining mass = Original mass × 0.5^n , where n is the number of lives.
In this case, since the half life is 10 years then n is 1
Therefore;
Remaining mass = 100 g × 0.5^1
= 50 g
Therefore, 50 g of the isotope will remain after 10 years
#b. Mass of the isotope that will remain after 20 years
Remember the formula;
Remaining mass = Original mass × 0.5^n
n = Time ÷ half life
n = 20 years ÷ 10 years
= 2
Therefore;
Remaining mass = 100 g × 0.5^2
= 25 g
Thus, 25 g of the isotope will be left after 20 years
#3. Number of half lives in 40 years
1 half life = 10 years
But; n = time ÷ half life
= 40 years ÷ 10 years
= 4
Thus, the number of half lives in 40 years is 4.