here since string is attached with a mass of 2 kg
so here tension force in the rope is given as

here we will have

now we will have speed of wave given as

here we will have


now we know that frequency is given as
F = 100 Hz
now wavelength is given as


so wavelength will be 0.16 m
Answer:
a. 7.046 Nm²/C
b. 2.348 Nm²/C
Explanation:
Data given:
Base of equilateral triangle = 25.0 cm = 0.25 m
Strength of electric field = 260 N/C
In order to find the electric flux we first have to find out the area of triangle.
Area of triangle = 
= 
= 0.0271 m³
Lets find electric flux,
Electric Flux = E. A
= 260×0.0271
= 7.046 Nm²/C
Now we can find the electric flux through each of the three sides.
Electric flux through three sides = 
= 2.348 N m²/C
Answer with Explanation:
We are given that mass of block=0.0600 kg
Initial speed of block=0.63 m/s
Distance of block from the hole when the block is revolved=0.47 m
Final speed=3.29 m/s
Distance of block from the hole when the block is revolved=
a.We have to find the tension in the cord in the original situation when the block has speed =

Because tension is equal to centripetal force
Substitute the values

b.

c.Work don=Final K.E-Initial K.E



Explanation:
Below is an attachment containing the solution.