Answer:
0.8895m
Explanation:
Cable diameter = 0.0125m
Mass of elevator = 6450kg
Young Modulus(E) = 2.11*10¹¹N/m
∇l (change in length) =
L = 362m
A = Πr², but r = d / 2 = 0.0125 / 2 = 0.00625m
A = 3.142 * (0.00625)² = 1.227*10^-4m²
Young Modulus (E) = Tensile stress / Tensile strain
E = (F / A) / ∇l / L
F = mg = 6450 * 9.8 = 63210N
2.11*10¹¹ = (63210 / 1.22*10^-4) / (∇l / 362)
2.11*10¹¹ = 5.18*10⁸ / (∇l / 362)
2.11*10¹¹ = (5.18*10⁸ * 362) / ∇l
2.11*10¹¹ = 1.875*10¹¹ / ∇l
∇l = 1.875*10¹¹ / 2.11*10¹¹
∇l = 0.8895m
The change in length is 0.8895m
<span>An ax is an example of a wedge. The correct option among all the options that are given in the question is the second option or option "b". The other choices given in the question are incorrect and can be easily neglected. I hope that this is the answer that has actually come to your great help.</span>
Answer:
Forms over water, warm humid air mass, it's a polar air mass
Explanation: I think that's right sorry if it's not..
GL! :)
Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is

Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e

- inversely proportional to its cross section area i.e

Therefore

ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:


......(1)
Again for tungsten:

........(2)
Given that
and 
Dividing the equation (1) and (2)

[since
and
]



Therefore the ratio of diameter of the copper to that of the tungsten is
