By using parallel lines and transversal lines concept we can prove m∠1=m∠5.
Given that, a║b and both the lines are intersected by transversal t.
We need to prove that m∠1=m∠5.
<h3>What is a transversal?</h3>
In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points.
m∠1+m∠3= 180° (Linear Pair Theorem)
m∠5+m∠6=180° (Linear Pair Theorem)
m∠1+m∠3=m∠5+m∠6
m∠3=m∠6
m∠1=m∠5 (Subtraction Property of Equality)
Hence, proved. By using parallel lines and transversal lines concept we can prove m∠1=m∠5.
To learn more about parallel lines visit:
brainly.com/question/16701300
#SPJ1
Answer:
10 degrees
Step-by-step explanation:
1.) every triangle has angles that add up to 180 degrees
2.) a right triangle has a right angle and two acute angles
3.) right=90 degrees; acute=<90 degrees
4.) 90+80=170
5.) 180-170=10
I believe the answer to your question is b=40*
Hope this helps:)