1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
6

Please help with #1 and explain your answers! Thank you

Mathematics
2 answers:
sashaice [31]3 years ago
8 0

1a) False. A square is never a trapezoid. A trapezoid has only one pair of parallel sides while the other set of opposite sides are not parallel. Contrast this with a square which has 2 pairs of parallel opposite sides.

1b) False. A rhombus is only a rectangle when the figure is also a square. A square is essentially a rhombus and a rectangle at the same time. If you had a Venn Diagram, then the circle region "rectangle" and the circle region "rhombus" overlap to form the region for "square". If the statement said "sometimes" instead of "always", then the statement would be true.

1c) False. Any rhombus is a parallelogram. This can be proven by dividing up the rhombus into triangles, and then proving the triangles to be congruent (using SSS), then you use CPCTC to show that the alternate interior angles are congruent. Finally, this would lead to the pairs of opposite sides being parallel through the converse of the alternate interior angle theorem. Changing the "never" to "always" will make the original statement to be true. Keep in mind that not all parallelograms are a rhombus.

Vesna [10]3 years ago
3 0
1A) F
1B) F
1C) F
They are all false
Your welcome
Sorry for no work
Im a mental thinker
You might be interested in
A professor graded the final exams and found that the mean score was 70 points. Which of the following can you conclude?
larisa86 [58]

Answer:  C) 50% of the students scored below 70%

<u>Step-by-step explanation:</u>

Mean is the average.  To find the mean (aka average) you add up all of the scores and divide by the number of tests.  

B) The mean can be 70 without any test scoring 70% so B is not true.

A) Since B is not true, then A is not a valid option.

D) We don't know any of the other data so don't know if it is skewed left, skewed right, or normal.  Therefore, option D is not true.

C) If the average is 70%, then half received grades above that score and half received grades below that score.  So, option C is TRUE!

7 0
3 years ago
Simplify the given expression 8x^2-8/ x / 8(x^2 + 8)/26x^2 - 31x
notsponge [240]

Answer:

-x • (x2 - 208x + 814)

 ——————————————————————

           26          

Step-by-step explanation:

Step  1  :

           x2 + 8

Simplify   ——————

             26  

Polynomial Roots Calculator :

  Find roots (zeroes) of :       F(x) = x2 + 8

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  8.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,4 ,8

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        9.00      

     -2       1        -2.00        12.00      

     -4       1        -4.00        24.00      

     -8       1        -8.00        72.00      

     1       1        1.00        9.00      

     2       1        2.00        12.00      

     4       1        4.00        24.00      

     8       1        8.00        72.00      

Polynomial Roots Calculator found no rational roots

Equation at the end of step  1  :

             8     (x2+8)

 ((8•(x2))-((— ÷ 8•——————)•x2))-31x

             x       26  

:

           8

Simplify   —

           x

Equation at the end of step  2  :

             8     (x2+8)

 ((8•(x2))-((— ÷ 8•——————)•x2))-31x

             x       26  

        8      

Divide  —  by  8

        x      

             1 (x2+8)

 ((8•(x2))-((—•——————)•x2))-31x

             x   26  

Equation at the end of step  4  :

                 (x2 + 8)            

 ((8 • (x2)) -  (———————— • x2)) -  31x

                   26x                

Dividing exponential expressions :

 x2 divided by x1 = x(2 - 1) = x1 = x

Equation at the end of step  5  :

                x • (x2 + 8)      

 ((8 • (x2)) -  ————————————) -  31x

                     26          

Equation at the end of step  6  :

          x • (x2 + 8)      

 (23x2 -  ————————————) -  31x

               26          

Rewriting the whole as an Equivalent Fraction :

  Subtracting a fraction from a whole

Rewrite the whole as a fraction using  26  as the denominator :

            23x2     23x2 • 26

    23x2 =  ————  =  —————————

             1          26    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

    Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

23x2 • 26 - (x • (x2+8))      -x3 + 208x2 - 8x

————————————————————————  =  ————————————————

           26                       26        

Equation at the end of step  7  :

 (-x3 + 208x2 - 8x)    

 —————————————————— -  31x

         26            

Rewriting the whole as an Equivalent Fraction :

Subtracting a whole from a fraction

Rewrite the whole as a fraction using  26  as the denominator :

          31x     31x • 26

   31x =  ———  =  ————————

           1         26    

Pulling out like terms :

   Pull out like factors :

  -x3 + 208x2 - 8x  =   -x • (x2 - 208x + 8)  

Trying to factor by splitting the middle term

     Factoring  x2 - 208x + 8  

The first term is,  x2  its coefficient is  1 .

The middle term is,  -208x  its coefficient is  -208 .

The last term, "the constant", is  +8  

Multiply the coefficient of the first term by the constant   1 • 8 = 8  

Find two factors of  8  whose sum equals the coefficient of the middle term, which is   -208 .

     -8    +    -1    =    -9  

     -4    +    -2    =    -6  

     -2    +    -4    =    -6  

     -1    +    -8    =    -9  

     1    +    8    =    9  

     2    +    4    =    6  

     4    +    2    =    6  

     8    +    1    =    9  

Adding fractions that have a common denominator :       Adding up the two equivalent fractions

-x • (x2-208x+8) - (31x • 26)     -x3 + 208x2 - 814x

—————————————————————————————  =  ——————————————————

             26                           26        

Pulling out like terms :

10.1     Pull out like factors :

  -x3 + 208x2 - 814x  =   -x • (x2 - 208x + 814)  

Trying to factor by splitting the middle term

10.2     Factoring  x2 - 208x + 814  

The first term is,  x2  its coefficient is  1 .

The middle term is,  -208x  its coefficient is  -208 .

The last term, "the constant", is  +814  

Multiply the coefficient of the first term by the constant   1 • 814 = 814  

Find two factors of  814  whose sum equals the coefficient of the middle term, which is   -208 .

     -814    +    -1    =    -815  

     -407    +    -2    =    -409  

     -74    +    -11    =    -85  

     -37    +    -22    =    -59  

     -22    +    -37    =    -59  

     -11    +    -74    =    -85  

     -2    +    -407    =    -409  

     -1    +    -814    =    -815  

     1    +    814    =    815  

     2    +    407    =    409  

     11    +    74    =    85  

     22    +    37    =    59  

     37    +    22    =    59  

     74    +    11    =    85  

     407    +    2    =    409  

     814    +    1    =    815  

5 0
3 years ago
Provide steps please
KengaRu [80]

Answer:

5 cm

Step-by-step explanation:

The volume (V) of a cuboid is calculated as

V = lbh ( l is length, b is breadth and h is height )

Here l = 20, h = 12, V = 1200 and b is to be found, thus

20 × b × 12 = 1200, that is

240b = 1200 ( divide both sides by 240 )

b = 5

7 0
3 years ago
If f(x)=2^x-1 and g(x)= x^2-1, determine the value of (f o g)(3)
zimovet [89]

Answer: 4

Step-by-step explanation:

( f o g ) (3) means f(g(3)) so...

First: plug 3 into g(x) = x^ (2-1)

3^ (2-1) is 3^1 = 3

Next: plug 3 into f(x)= 2^(x-1)

2^(3-1) is 2^(2) > 2×2 = 4

3 0
3 years ago
HOW MANY TRIANGLES ARE THERE?????
Alja [10]

Answer:

I count 10 triangles.....

4 0
3 years ago
Read 2 more answers
Other questions:
  • Overweight participants who lose money when they don’t meet a specific exercise goal meet the goal more often, on average, than
    7·1 answer
  • What is 7,045 divided by 15
    10·1 answer
  • The value of(−2)−[(−3)−(−7)−(−6)]i s___________.
    11·2 answers
  • What is the constant in this expression?<br> 4<br> m-417+3.5+52
    10·1 answer
  • Choose all the ways the ratio of five girls to 9 boys can be written. the options are
    9·1 answer
  • Help me please lol!!!!Quick
    6·1 answer
  • Need help pls pls pls
    8·2 answers
  • Please help. Algebra 2.
    10·2 answers
  • Can someone please help me with math.
    7·1 answer
  • Can you find the perimeter of each triangle and type the correct code? Please remember to type in ALL CAPS with no spaces.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!