Bromine has the following electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5. categorize the electrons in each. Answer for video: The video player is loaded.
On the periodic chart, row 5, column 7, is where you can find a chemical element that was identified in 1811. It has a proton count of 53 and an atomic mass of 126.9. Iodine's atom, then, contains 53 electrons in the following configuration: 1s2, 2s2, 2p6, 3s2, 3d10, 4p6, 5s2, 4d10, 5p5 (Kr 4d10 5s2 5p5). Cu Z = 29 has an electrical arrangement of 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Copper (Co) has the following electron configuration: 1s2 2s2 2p6 3s3 3p6 4s2 3d7. If a chemist were to refer to Copper by its subshell, they would abbreviate this notation to "3d7."
To learn more about electrons please click on below link
brainly.com/question/1255220
#SPJ4
(a)- Time
(b)- Heat produced(i guess)
(c)- Material
this is what I think, hope it helps
Your answer is: C. Neutrons are inside the nucleus of a atom
In reaction 1 of the Krebs cycle, acetyl‑CoA formed in the pyruvate dehydrogenase reaction condenses with the four‑carbon compound to form <em>citrate </em>with the elimination of coenzyme A. Since the product has three carboxyl groups, this pathway is referred to as the cycle. In reaction 2 of the Krebs cycle, this product then undergoes to form<em> isocitrate. </em>The enzyme is called aconitase because the compound cis‑aconitate is the <em>intermediate product</em> of the reaction. Reaction 3 eliminates CO2 to form the five‑carbon dicarboxylic acid <em>α-cetoglutarate. </em>Oxidation also occurs, with electrons transferred from the substrate to <em>COO-</em> . Consequently, this reaction is an oxidative decarboxylation.
In the image, you can see the reaction 2 in Krebs cycle is a two steps reaction with an intermediate cis-aconitase and a product called isocitrate.
Answer:

Explanation:
Hello!
In this case, since the molarity of a solution is calculated by diving the moles of solute by the volume of solution in liters, we first compute the moles of barium hydroxide in 35.5 g as shown below:

Then, the liters of solution:

Finally, the molarity turns out:

Best regards!