Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π and cos A = cos B · cos C
scratchwork:
A + B + C = π
A = π - (B + C)
cos A = cos [π - (B + C)] Apply cos
= - cos (B + C) Simplify
= -(cos B · cos C - sin B · sin C) Sum Identity
= sin B · sin C - cos B · cos C Simplify
cos B · cos C = sin B · sin C - cos B · cos C Substitution
2cos B · cos C = sin B · sin C Addition
Division
2 = tan B · tan C

<u>Proof LHS → RHS</u>
Given: A + B + C = π
Subtraction: A = π - (B + C)
Apply tan: tan A = tan(π - (B + C))
Simplify: = - tan (B + C)

Substitution: = -(tan B + tan C)/(1 - 2)
Simplify: = -(tan B + tan C)/-1
= tan B + tan C
LHS = RHS: tan B + tan C = tan B + tan C 
The volume is 288
because V = w h l = 6•4•12 = 288
Answer:
(B), Nominal.
Step-by-step explanation:
A nominal or categorical scale of measurement that is generally used to label or categorize the variables.
The person's "favorite sport" depicts the nominal scale of measurement.
Hence, the correct option is (B), Nominal.
Answer:
<u><em>note:</em></u>
<u><em>solution is attached due to error in mathematical equation. please find the attachment</em></u>
A=4 because √a=-2 the you square each side to make it a=4.