Answer:
Step-by-step explanation:
f(x)=x+4(x^2+2x-3)=4x^2+9x-12
f'(x)=8x+9
f'(x)=0,gives x=-9/8
f(-5)=-5+4(-5-1)(-5+3)=-5+4*-6*-2=43
f(-9/8)=-9/8+4(-9/8-1)(-9/8+3)
=-9/8+4*-17/8*15/8
=-9/8-255/16
=-273/16=-17 1/16
f(5)=4*5^2+9*5-12=100+45-12=133
absolute maximum=133
absolute minimum=-17 1/16
Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
It will be facing right...---------->
Answer:

Step-by-step explanation:
Hello,
First of all we need to take x different from 3 as dividing by 0 is not allowed
then for x real different from 3

hope this helps