Answer:
(a)
$850.
(b)
$4250.
(c)
$4267.
Step-by-step explanation:
It is given that the value of a new car decreases by about 15% in the first year.
(a)
Now we are asked to find the cost of a car after one year; if we are given the initial value of car=$1000.
As the rate decreases by 15%.
that means we have to pay (100-15)% of the initial amount.
i.e. we have to pay 85% of the initial amount.
Hence the amount one has to pay= 85% of 1000.
which is equal to =85%×1000
⇒ =
Hence, the amount of car after one year when initaial amount is $1000 is:
$850.
(b)
if initial amount=$ 5000
then amount one has to pay after one year:

Hence, the amount of car after one year when initaial amount is $5000 is:
$4250.
(c)
if initial amount=$ 5020
then amount one has to pay after one year:

Hence, the amount of car after one year when initaial amount is $5020 is:
$4267.
A.) .6 or 60%
b.) .66 or 66%

Now we must solve this equation if x = 5. To do so we must substitute:

Using PEMDAS we will solve for the parenthesis first.

Multiply:

Add:

Final answer: 62
Point A
3/4 in fraction
.75 in decimal
and 75% in percent