Answer:
The coordinates of the vertices of the rotated figure are :
U' (1 , -6), V' (-8 , -4), W' (-5 , 7) ⇒ the right answer is figure (d)
Step-by-step explanation:
* Lets study the matrices of the Rotation by 180°
- When we rotate a point around the origin by 180° clockwise
or anti-clockwise, we change the sign of the x-coordinate and
the y-coordinate of the point
- Then matrix of the rotation 180° is
![\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%260%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D)
* Now lets solve the problem
- We will multiply the matrix of the rotation by each point to
find the image of each point
- The dimension of the matrix of the rotation is 2×2 and the
dimension of the matrix of each point is 2×1, then the
dimension of the matrix of each image is 2×1
∵ Point U is (-1 , 6)
∴ ![U'=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\left[\begin{array}{ccc}-1\\6\end{array}\right]=](https://tex.z-dn.net/?f=U%27%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%260%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C6%5Cend%7Barray%7D%5Cright%5D%3D)
![\left[\begin{array}{ccc}(-1)(-1)+(0)(6)\\(0)(-1)+(-1)(6)\end{array}\right]=\left[\begin{array}{ccc}1\\-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-1%29%28-1%29%2B%280%29%286%29%5C%5C%280%29%28-1%29%2B%28-1%29%286%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C-6%5Cend%7Barray%7D%5Cright%5D)
∴ U' = (1 , -6)
∵ Point V is (8 , 4)
∴ ![V'=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\left[\begin{array}{ccc}8\\4\end{array}\right]=](https://tex.z-dn.net/?f=V%27%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%260%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C4%5Cend%7Barray%7D%5Cright%5D%3D)
![\left[\begin{array}{ccc}(-1)(8)+(0)(4)\\(0)(8)+(-1)(4)\end{array}\right]=\left[\begin{array}{ccc}-8\\-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-1%29%288%29%2B%280%29%284%29%5C%5C%280%29%288%29%2B%28-1%29%284%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%5C%5C-4%5Cend%7Barray%7D%5Cright%5D)
∴ V' = (-8 , -4)
∵ Point W is (5 , -7)
∴ ![W'=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\left[\begin{array}{ccc}5\\-7\end{array}\right]=](https://tex.z-dn.net/?f=W%27%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%260%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C-7%5Cend%7Barray%7D%5Cright%5D%3D)
![\left[\begin{array}{ccc}(-1)(5)+(0)(-7)\\(0)(5)+(-1)(-7)\end{array}\right]=\left[\begin{array}{ccc}-5\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-1%29%285%29%2B%280%29%28-7%29%5C%5C%280%29%285%29%2B%28-1%29%28-7%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
∴ W' = (-5 , 7)
* Now look to the figures to find the right answer
∵ The images of the points are U' (1 , -6), V' (-8 , -4), W' (-5 , 7)
∴ The right answer is figure (d)