Answer:
b) pH = 9.25
Explanation:
- NH4+(aq) + H2O(l) ↔ NH3(aq) + H3O+(aq)
- NH3 + H2O ↔ NH4+ + OH-
- 2 H2O ↔ H3O+ + OH-
⇒ Kb = [ NH4+ ] * [ OH- ] / [ NH3 ] = 1.86 E-5......from literature
mass balance NH4+:
⇒ M NH4+ = [ NH4+ ] - [ OH- ]
∴ [ NH3 ] ≅ M NH4+ = 0.26 M
⇒ Kb = (( 0.26 + [ OH- ] )) * [ OH- ] / 0.26 = 1.86 E-5
⇒ 0.26 [ OH-] + [ OH- ]² = 4.836 E-6
⇒ [ OH- ]² + 0.26 [ OH- ] - 4.836 E-6 = 0
⇒ [ OH- ] = 1.859 E-5 M
⇒ pOH = - Log ( 1.859 E-5 )
⇒ pOH = 4.7305
⇒ pH = 14 - pOH = 9.269
*The molality of a solution is calculated by taking the moles of solute and dividing by
the kilograms of solvent* Basically if we had 1.00 mole of sucrose (it's about 342 3 grams) and
proceeded to mix it into exactly 1.00 liter water. It would dissolve and make sugar
water. We keep adding water, dissolving and stirring until all the solid was gone. We
then made sure everything was well-mixed.
What would be the molality of this solution? Notice that my one liter of water weighs
1000 grams (density of water = 1.00 g / mL and 1000 mL of water in a liter).
Answer:
The correct answer to the following question will be "Particles".
Explanation:
- A particle seems to be a little component of something, it's little. When you're talking about a subatomic particle, that would be a structured user likely won't see because it's quite unbelievably thin, but it has a tiny mass as well as structural integrity. Such particles seem to be tinier than that of the particles or atoms.
- Such that the light which shines on the bit of metal could dissipate electrons, the particles seem to be more compatible with the light.
Matter- Anything that occupies space and has mass is called matter.That is they have both mass and volume.
Apple is an example of matter because it occupies space and has mass and volume.