Molecular is every element present in the compound eg C2H6, empirical is the smallest whole number ratio of elements in a compound so that would be CH3 as you divide by the highest common factor. Some compounds only have 1 formula if they are simple or have no common factors. Eg methane, CH4 is its molecular and empirical because its the simplest whole number ratio and includes every element in the molecule
Answer:
An F1 offspring could produce four types of gametes, RY, Ry, rY, and ry. The F2 generation supports the independent-assortment model and refutes the linkage model.
Explanation:
Answer: Total pressure inside of a vessel is 0.908 atm
Explanation:
According to Dalton's law, the total pressure is the sum of individual partial pressures. exerted by each gas alone.
= partial pressure of nitrogen = 0.256 atm
= partial pressure of helium = 203 mm Hg = 0.267 atm (760mmHg=1atm)
= partial pressure of hydrogen =39.0 kPa = 0.385 atm (1kPa=0.00987 atm)
Thus
=0.256atm+0.267atm+0.385atm =0.908atm
Thus total pressure (in atm) inside of a vessel is 0.908
Density of liquid= .
so, density of liquid= = 1.2 gm/cm³.
Answer:
1.95*10²² molecules are in 5.50 grams of AgNO₃
Explanation:
Being the molar mass of the elements:
- Ag: 107.87 g/mole
- N: 14 g/mole
- O: 16 g/mole
then the molar mass of the compound is:
AgNO₃: 107.87 g/mole + 14 g/mole + 3*16 g/mole= 169.87 g/mole
Then you can apply the following rule of three: if 169.87 grams of the compound are present in 1 mole, 5.50 grams will be present in how many moles?
moles= 0.0324
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number applies to any substance.
You can apply the following rule of three: if by definition of Avogadro's Number 1 mole of the substance contains 6.023 * 10²³ molecules, 0.0324 moles how many molecules will it have?
molecules=1.95*10²²
<u><em>1.95*10²² molecules are in 5.50 grams of AgNO₃</em></u>