Answer:
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Explanation:
Hello!
In this case, since the molarity of a solution is defined in terms of the moles of the solute and the volume of solution, given that the concentration of Cu(NH₃)₄²⁺ is 0.041 M, and there is only one copper atom per Cu(NH₃)₄²⁺ ion, we can compute the concentration of Cu²⁺ as shown below:
![[Cu^{2+}]=0.041\frac{molCu(NH_3)_4^{2+}}{L}*\frac{1molCu^{2+}}{1molCu(NH_3)_4^{2+}} =0.041 \frac{molCu(NH_3)_4^{2+}}{L}](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B1molCu%5E%7B2%2B%7D%7D%7B1molCu%28NH_3%29_4%5E%7B2%2B%7D%7D%20%3D0.041%20%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D)
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Best regards!
<u>Answer:</u> The correct answer to this problem is 2.
<u>Explanation:</u>
We are given a mathematical problem, which is:
1 + 1 = ?
To solve this, we use the mathematical operator known as addition. In this, we add two numbers and the resulting value is the answer to the problem.
By adding 1 and 1, we get:

Thus, the correct answer to this problem is 2.
Answer:
0.0025 M/min
Explanation:
The rate of a reaction can be calculated for an element, based on its stoichiometric coefficient. For a reaction:
aA + bB = cC + dD , the rate will be
r = -(1/a)x(Δ[A]/Δt) = -(1/b)x(Δ[B]/Δt) = (1/c)x(Δ[C]/Δt) = (1/d)x(Δ[D]/Δt)
Where Δ[X] is the variation of the concentration of the X compound, Δt is the time variation, and the signal of minus in the reagents compounds is because they are disappearing, so Δ[X] will be negative, and r must be positive. So, for the reaction given:
r = -(1/2)x(Δ[NO]/Δt)
r = -(1/2)x( (0.025 - 0.1)/15)
r = 0.0025 M/min
Base on my research and further investigation about the said problem, the possbile answer would be this one.
<span>1. calculate the g of PbO in the 272 g lead crystal (19% PbO)
272 g x 19 /100 = xxx g PbO
xxx g PbO/molecular mass of PbO = moles PbO
2. write and balance the equation of neutralization of PbO and sodium sulfide.
PbO + sodium sulfide -> sodium oxide + lead sulfide
3. Calculate the moles of sodium sulfide that will react with the moles of PbO
4. Convert the moles of sodium sulfide to g of sodium sulfide</span>