For the functions f(x) = 4x + 7 and g(x) = -9x + 11, find f(g(0)). For the functions f(x) = 3x2 - 7 and g(x) = -3x2 + 4, find f(g(2)). (Do NOT put commas in large numbers.)
Answer:
<h3><em>
D. 880 = 45d + 70; 18 days.</em></h3>
Step-by-step explanation:
We are given fixed monthly charge = $70.
The cost of preschool per day = $45.
Number of days = d.
Total cost of d days = cost per day × number of days + fixed monthly charge.
Therefore, we get equation
880 = 45×d+70
<h3>880 = 45d +70.</h3>
Now, we need to solve the equation for d.
Subtracting 70 from both sides, we get
880-70 = 45d +70-70
810=45d
Dividing both sides by 45, we get

18=d.
Therefore,<em> 18 days Barry attended preschool last month.</em>
<em>Therefore, correct option is D option.</em>
<h3><em>
D. 880 = 45d + 70; 18 days.</em></h3>
☁️ Answer ☁️
Here's what I found:
Identify the coordinates (x₁,y₁)and(x₂,y₂). We will use the formula to calculate the slope of the line passing through the points (3,8) and (-2, 10).
Input the values into the formula. This gives us (10 - 8)/(-2 - 3).
Subtract the values in parentheses to get 2/(-5).
Simplify the fraction to get the slope of -2/5.
Check your result using the slope calculator.
To find the slope of a line we need two coordinates on the line. Any two coordinates will suffice. We are basically measuring the amount of change of the y-coordinate, often known as the rise, divided by the change of the x-coordinate, known the the run. The calculations in finding the slope are simple and involves nothing more than basic subtraction and division.
Here's the link:
https://www.omnicalculator.com/math/slope#:~:text=How%20to%20find%20slope%201%20Identify%20the%20coordinates,5%20Check%20your%20result%20using%20the%20slope%20calculator.
Here's a video to help you: https://m.you tube.com/watch?v=wvzBH46D6ho
(Just remove the space)
Hope it helps.
Have a nice day noona/hyung.
Answer:
Simplify
A ⋅ 13−oz.
−oz+13 A
Simplify
a⋅20+0z.
20a
List all of the solutions.
A⋅13−oz=−oz+13A 78=−oz+13a⋅20
I think the answer is the second one. A reflection over the x-axis and the a 90° counterclockwise rotation about the origin.