Answer:
the final mole of the flexible container = 12.92 moles
Explanation:
Given that :
initial volume of a flexible container = 6.13 L
initial mole of a flexible container = 6.51 mol
final volume of a flexible container = 18.3 L
final mole of a flexible container = ???
Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container.
Therefore,


n = 19.43

19.43 = 6.51 + n₂
n₂ = 19.43 - 6.51
n₂ = 12.92 moles
Thus; the final mole of the flexible container = 12.92 moles
Answer:
do i care lol LOOK AT THIS
VVVVVVVVVVVVVVVVVVV
Answer:
The approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
Explanation:
First we have to calculate the heat gained by the calorimeter.

where,
q = Heat gained = ?
c = Specific heat = 
ΔT = The change in temperature = 3.08°C
Now put all the given values in the above formula, we get:


Now we have to calculate molar enthalpy of combustion of this substance :

where,
= enthalpy change = ?
q = heat gained = 8.2544kJ
n = number of moles methane = 

Therefore, the approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
<u><em>Answer:</em></u>
- The correct option is C.
- Formation of a precipitate
<u><em>Explanation:</em></u>
During a chemical reaction, new substances are formed known as a products, mostly reaction occur and their product is obtained as precipitates.
<u><em>Example</em></u>
Arylidene-2-thiobarbituric acid is obtained as precipitates when aldehyde and thiobarbituric acid react to each other.
melting of a substance
It is just indication of physical changes, like melting of ice, composition remained same as before.
boiling of a substance
It is just indication of physical changes, like boiling of water into vapors, composition remained same as before.
freezing of a substance
It is just indication of physical changes, like freezing of water into ice, composition remained same as before
H2O2(I)
C6H6(O)
CO2(I)
C2H6(O)
HNO3(I)