(20*1000)÷(molecular weight of H3po4*50)
The volume of chlorine required is 7.71 L.
The reaction between phosphorus and chlorine is:
2P + 5Cl₂→ 5PCl₅
Therefore, 2 moles of P requires 5 moles of chlorine to react with it.
Given mass of P =3.39 g
Molar mass of P=30.97 g/mol
No. of moles of P = given mass/ molar mass = 3.39 / 30.97 = 0.109 moles
2 moles of P requires 5 moles of chlorine
0.109 moles of P will require 0.109 x 5/2 = 0.2725 moles of chlorine
According to ideal gas equation
PV=nRT
2.04 x V = 0.2725 x 0.0821 x 703
V = 0.2725 x 0.0821 x 703 / 2.04
V = 7.71L
Learn more about ideal gas equation here:
brainly.com/question/3637553
#SPJ4
Is ionic equation . nitric acid + solid aluminium = hydroxide.
Answer:

Explanation:
We will need a balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
Mᵣ: 44.01
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 1.5
1. Calculate the moles of CO₂
The molar ratio is 3 mol CO₂:1 mol C₃H₈

2. Calculate the mass of CO₂.

Answer:
identify the atoms on each side.
Count the atoms on each side.
Use coefficients to increase the atoms on each side.
Check to make sure you have the same number of each type of atom on each side.
Explanation:
The concept behind balancing chemical equations is to ensure that they comply with the law of conservation of matter. This helps to make chemical equations quantitatively meaningful.
- First, identify the atoms on each side of the expression.
- Then count these atoms.
- Assign appropriate numeric coefficient to the species.
- Then check to make sure there are equal number of each type of atoms on each side.
The subscript of the formula must not be changed in an attempt to balance a chemical equation.