Answer:


The number of minutes she can continue to descend if she does not want to reach a point more than 144 feet below the ocean surface is <u>at most 5 minutes.</u>
Step-by-step explanation:
Given:
Initial depth of the scuba dive = 19 ft
Rate of descent = 25 ft/min
Maximum depth to be reached = 144 ft
Now, after 't' minutes, the depth reached by the scuba dive is equal to the sum of the initial depth and the depth covered in 't' minutes moving at the given rate.
Framing in equation form, we get:
Total depth = Initial Depth + Rate of descent × Time
Total depth = 
Now, as per question, the total depth should not be more than 144 feet. So,

Solving the above inequality for time 't', we get:

Therefore, the number of minutes she can continue to descend if she does not want to reach a point more than 144 feet below the ocean surface is at most 5 minutes.
Answer:
Using either method, we obtain: 
Step-by-step explanation:
a) By evaluating the integral:
![\frac{d}{dt} \int\limits^t_0 {\sqrt[8]{u^3} } \, du](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cint%5Climits%5Et_0%20%7B%5Csqrt%5B8%5D%7Bu%5E3%7D%20%7D%20%5C%2C%20du)
The integral itself can be evaluated by writing the root and exponent of the variable u as: ![\sqrt[8]{u^3} =u^{\frac{3}{8}](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bu%5E3%7D%20%3Du%5E%7B%5Cfrac%7B3%7D%7B8%7D)
Then, an antiderivative of this is: 
which evaluated between the limits of integration gives:

and now the derivative of this expression with respect to "t" is:

b) by differentiating the integral directly: We use Part 1 of the Fundamental Theorem of Calculus which states:
"If f is continuous on [a,b] then

is continuous on [a,b], differentiable on (a,b) and 
Since this this function
is continuous starting at zero, and differentiable on values larger than zero, then we can apply the theorem. That means:

Answer:
$1.45
Step-by-step explanation:
9.25 - 2 = 7.25
7.25 ÷ 5 = 1.45
Answer:
the answer is d
Step-by-step explanation: