Can you comment the question I will be happy to help
Make the problem r=8-16. Then you will have r=-8, your answer
Answer:

Step-by-step explanation:
We are given that:

And we want to find F'(0).
First, find F(x):
![\displaystyle F'(x) = \frac{d}{dx}\left[ f(3x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%20f%283x%29%5D)
From the chain rule:
![\displaystyle \begin{aligned} F'(x) &= f'(3x) \cdot \frac{d}{dx} \left[ 3x\right] \\ \\ &= 3f'(3x)\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20F%27%28x%29%20%26%3D%20f%27%283x%29%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cleft%5B%203x%5Cright%5D%20%5C%5C%20%5C%5C%20%26%3D%203f%27%283x%29%5Cend%7Baligned%7D)
Then:

In conclusion, F'(0) = 15.
Answer:
diagonal = = 12.8 inches (to the nearest tenth of an inch)
Step-by-step explanation:
As shown in the diagram attached to this solution:
Let the Length of the rectangular board = a
Let the width = b
Let the diagonal = d
where:
a = 10 inches
b = 8 inches
d = ?
Triangle ABC in the diagram is a right-angled triangle, therefore, applying Pythagoras theorem:
(hypotenuse)² = (Adjacent)² + (Opposite)²
d² = 10² + 8²
d² = 100 + 64
d² = 164
∴ d = √(164)
d = 12.806 inches
d = 12.8 inches (to the nearest tenth of an inch)
<em>N:B Rounding off to the nearest tenth of an inch is the same as rounding off to 1 decimal place.</em>
Let Sara weight =x+25
amber wiegh =x
x+25+x=205
x= 90
Sara weight is 90+25= 115