The option that is not associated with the given term called urban sprawl is; Option A: Blocking high views
What is Urban Sprawl?
Urban sprawl is defined as the rapid expansion of the geographic boundaries of towns and cities which is often accompanied by low-density residential housing and increased reliance on the private automobilefor movement.
Looking at the given options, "blocking high views" is the option that is not typically a problem associated with urban sprawl because urbanization usually takes place on relatively flat levels.
The missing options are;
a. blocking high views
b. destroying animal habitats
c. overrunning farmland
d. reducing green space
Read more about urban sprawl at; brainly.com/question/504389
<u>Solution and Explanation:</u>
Volume of gas stream = 1000 cfm (Cubic Feet per Minute)
Particulate loading = 400 gr/ft3 (Grain/cubic feet)
1 gr/ft3 = 0.00220462 lb/ft3
Total weight of particulate matter = 
Cyclone is to 80 % efficient
So particulate remaining = 
emissions from this stack be limited to = 10.0 lb/hr
Particles to be remaining after wet scrubber = 10.0 lb/hr
So particles to be removed = 685.7136- 10 = 675.7136
Efficiency = output multiply with 100/input = 98.542 %
Answer:it forms a molten mold that makes it hard to be able to smash something into it then make something like a key
Explanation:
Answer:
a) Under damped
Explanation:
Given that system is critically damped .And we have to find out the condition when gain is increased.
As we know that damping ratio given as follows

Where C is the damping coefficient and Cc is the critical damping coefficient.

So from above we can say that


From above relationship we can say when gain (K) is increases then system will become under damped system.
Answer:
Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.
Explanation:
Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow. You can also see that
represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:
- Wall Thickness. More thickness, more thermal resistance.
- Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
- Cross-section Area. More cross-section area, less thermal resistance.
A expression to define the thermal resistance for the wall is as follows:
, where l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.