Engineering is the technical
Answer:
COP = 3.828
W' = 39.18 Kw
Explanation:
From the table A-11 i attached, we can find the entropy for the state 1 at -20°C.
h1 = 238.43 KJ/Kg
s1 = 0.94575 KJ/Kg.K
From table A-12 attached we can do the same for states 3 and 4 but just enthalpy at 800 KPa.
h3 = h4 = hf = 95.47 KJ/Kg
For state 2, we can calculate the enthalpy from table A-13 attached using interpolation at 800 KPa and the condition s2 = s1. We have;
h2 = 275.75 KJ/Kg
The power would be determined from the energy balance in state 1-2 where the mass flow rate will be expressed through the energy balance in state 4-1.
W' = m'(h2 - h1)
W' = Q'_L((h2 - h1)/(h1 - h4))
Where Q'_L = 150 kW
Plugging in the relevant values, we have;
W' = 150((275.75 - 238.43)/(238.43 - 95.47))
W' = 39.18 Kw
Formula foe COP is;
COP = Q'_L/W'
COP = 150/39.18
COP = 3.828
Answer:
Do you mean 4m^3 and 3.0 tones?
Explanation:
solution:
Mass = m = 3.0 tones
- 1 ton = 1,000 kg
= 3.0 × 1,000
= 3,000 kg
volume = v = 4m^3
Required:
Mass density of oil = p = ?
We know that;

The answer is:
750kg / m^3
Answer:




Explanation:
From the question we are told that:
Zener diode Voltage 
Zener diode Current 
Note

Supply Voltage 
Reduction Percentage 
Generally the equation for Kirchhoff's Voltage Law is mathematically given by



Therefore




Generally the equation for Kirchhoff's Current Law is mathematically given by




Therefore



And there's an equation to help determine which configurations will work best. In a four-stroke engine, an individual piston fires every 720 degrees (two crankshaft rotations). ... The flat-four fires at 180-degree intervals, and its V angle is 180 degrees, which leads to a balance of firing forces.Jan 14, 2011
I’m not for sure if this is what you we’re looking for