Answer:
The Bauschinger effect is the directionally determined change in the elasticity limit of a metal or alloy after primary plastic deformation. If you first deform a metal in one direction so that it is plastically deformed and then deform it in the opposite direction, the elastic limit in the opposite direction is lower.
From the point of view of the dislocation mechanism of plastic deformation, the Bauschinger effect indicates that during repeated deformation, it is easier for dislocations blocked in front of obstacles to move in the direction opposite to their movement during preliminary plastic deformation.
Answer:
In Rankine 524.07°R
In kelvin 291 K
In Fahrenheit 64.4°F
Explanation:
We have given temperature 18°C
We have to convert this into Rankine R
From Celsius to Rankine we know that 
We have to convert 18°C
So 
Conversion from Celsius to kelvin
We have to convert 18°C

Conversion of Celsius to Fahrenheit
Bending effect!! Whenever the orientation of the diffracting planes changes when the diffracting planes bend, the contrast changes
Answer:
x=2.19in
Explanation:
This is the equation that relates the force and displacement of a spring
F=Kx
m=mass=12.5lbx1slug/32.14lb=0.39slug
F=mg=0.39*32.2=12.52Lbf
then we calculate the spring count in lbf / ft
K=F/x
K=5.7lbf/1in=5.7lbf/in=68.4lbf/ft
Finally we calculate the displacement with the initial equation
X=F/k
x=12.52/68.4=0.18ft=2.19in