Answer:
. Heat transfer can be higher if themal efficiency is lower.
Explanation:
The heat transfer rate to the river water is calculated by this expression:


The actual heat transfer can be higher if the steam power plant reports an thermal efficiency lower than expected.
Answer:
Architectural plans.
Explanation:
An architectural plan is called the drawings made by architects, civil engineers or designers of spaces or interiors, in which these professionals capture their building projects, organizing the distribution of the spaces to be used, the elements to be located in them and, fundamentally, to give construction planning a projection into reality. Thus, the plans help professionals to have a better understanding of the expected end result of the projects they are carrying out.
Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa, 

We know that for an ideal gas the mass flow rate will be calculated as follows.

or, m = 
=
= 10 kg/s
Now, according to the steady flow energy equation:




= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
= 
Therefore, we can conclude that the exit temperature of the gas in deg C is
.
Answer:
(a)
<em>d</em>Q = m<em>d</em>q
<em>d</em>q =
<em>d</em>T
=
(T₂ - T₁)
From the above equations, the underlying assumption is that
remains constant with change in temperature.
(b)
Given;
V = 2L
T₁ = 300 K
Q₁ = 16.73 KJ , Q₂ = 6.14 KJ
ΔT = 3.10 K , ΔT₂ = 3.10 K for calorimeter
Let
be heat constant of calorimeter
Q₂ =
ΔT
Heat absorbed by n-C₆H₁₄ = Q₁ - Q₂
Q₁ - Q₂ = m
ΔT
number of moles of n-C₆H₁₄, n = m/M
ρ = 650 kg/m³ at 300 K
M = 86.178 g/mol
m = ρv = 650 (2x10⁻³) = 1.3 kg
n = m/M => 1.3 / 0.086178 = 15.085 moles
Q₁ - Q₂ = m
' ΔT
= (16.73 - 6.14) / (15.085 x 3.10)
= 0.22646 KJ mol⁻¹ k⁻¹
Answer:
b. Discharging; anode; cathode
Explanation:
When discharging , it means the battery is producing a flow electric current, the lithium ions are released from the anode to the cathode which generates the flow of electrons from one side to another. When charging Lithium ions are released by the cathode and received by the anode.