1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ankoles [38]
3 years ago
13

What do b times h mean

Mathematics
2 answers:
viva [34]3 years ago
5 0
The B stands for Base and H stands for Height
lana66690 [7]3 years ago
4 0
Base times height in math
You might be interested in
The emergency brake cable in a truck parked on a steep hill breaks and the truck starts rolling down the hill. The distance in f
topjm [15]

Answer:40.5

Step-by-step explanation:

5 0
2 years ago
WILL MARK BRAINIEST AND 25 POINTS
MrRissso [65]
I did this in school: it would be A, C, and D
7 0
3 years ago
a warehouse holds 460 boxes. They ship out 65 boxes each week. After how many weeks will the warehouse have less than 100 boxes
Kamila [148]

It should take 6 weeks until the warehouse has less than 100 boxes remaining

6 0
2 years ago
Read 2 more answers
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Please solve this question!!​
GaryK [48]

Answer:  (i) 1/221     (ii) 11/221      (iii) 95/663        (iv) 1/663

<u>Step-by-step explanation:</u>

(i) A deck of cards contains 4 Kings out of 52 total cards

1st draw: 4 Kings out of 52 total cards → 4/52 = 1/13

2nd draw: 3 remaining Kings out of 51 total remaining cards  →  3/51 = 1/17

  <u>1st Draw </u>                   <u>2nd Draw </u>                  <u>Outcome</u>         <u>Probability</u>

 King: P(K) = 1/13        King: P(K₂/K₁) = 1/17     King, King       (1/13) x (1/17) = 1/221

*************************************************************************************************

(ii) A deck of cards contains 4 Jacks, 4 Queens, & 4 Kings out of 52 total cards

1st draw: 12 Face cards out of 52 total cards → 12/52 = 3/13

2nd draw: 11 remaining Face cards out of 51 total remaining cards  →  11/51

<u>1st Draw </u>                 <u>2nd Draw </u>                  <u>Outcome</u>       <u>Probability</u>

 Face: P(F) = 3/13    Face: P(F₂/F₁) = 11/51   Face,Face     (3/13) x (11/51) = 11/221

*************************************************************************************************

(iiI) A deck of cards contains 26 black cards out of 52 total cards but there are 2 black Jacks, 2 black Queens, and 2 black Kings.

1st draw: 20 Black (not Face) cards out of 52 total cards → 20/52 = 5/13

2nd draw: 19 remaining Black (not Face) cards out of 51 total remaining cards  →  19/51

  <u>1st Draw </u>                 <u>2nd Draw </u>                       <u>Outcome</u>   <u>Probability</u>

Black: P(B~) = 5/13   Black: P(B~₂/B~₁) = 19/51    B~,B~    (5/13) x (19/51) = 95/663

*************************************************************************************************

(ii) A deck of cards contains 4 Aces out of 52 total cards

1st draw: 4 Aces out of 52 total cards → 4/52 = 1/13

2nd draw: 1 Queen of Hearts out of 51 total remaining cards  →  1/51

  <u>1st Draw </u>                 <u>2nd Draw </u>                   <u>Outcome</u>         <u>Probability</u>

 Ace: P(A) = 1/13      Qh: P(Qh₂/A₁) = 1/51   Ace,Queen(h)   (1/13) x (1/51) = 1/663

7 0
3 years ago
Other questions:
  • The area of a rectangle is
    6·1 answer
  • I need help on this question
    11·1 answer
  • In a class of 777, there are 333 students who have done their homework.
    12·1 answer
  • Add.
    6·2 answers
  • Farmer Janet can plant 9 feet of carrots in 15 minutes while her daughter Amy can plant 17 feet of carrots in half an hour. Whic
    11·1 answer
  • A line with slope 6.5 and y-intercept (0,-8)​
    15·1 answer
  • The price of n tickets to a concert is is 9n + 6 dollars. What is the cost, in dollars, for 8 tickets to the play?
    15·1 answer
  • (0, 10) and (24, 6)
    14·2 answers
  • A bank account earns 6% simple interes per year if you deposit 1,000 and then do not make any additional deposits or withdrawals
    12·1 answer
  • Solve the inequality<br> -3(j+3)+9j&lt;-15
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!