Answer:
The new pressure is 53.3 kPa
Explanation:
This problem can be solved by this law. when the volume remains constant, pressure changes directly proportional as the Aboslute T° is modified.
T° increase → Pressure increase
T° decrease → Pressure decrease
In this case, temperature was really decreased. So the pressure must be lower.
P₁ / T₁ = P₂ / T₂
80 kPa / 300K = P₂/200K
(80 kPa / 300K) . 200 K = P₂ → 53.3 kPa
Explanation:
According to the Henderson-Hasselbalch equation, the relation between pH and
is as follows.
pH = 
where, pH = 7.4 and
= 7.21
As here, we can use the
nearest to the desired pH.
So, 7.4 = 7.21 + 
0.19 = 
= 1.55
1 mM phosphate buffer means
+
= 1 mM
Therefore, the two equations will be as follows.
= 1.55 ............. (1)
+
= 1 mM ........... (2)
Now, putting the value of
from equation (1) into equation (2) as follows.
1.55
= 1 mM
2.55
= 1 mM
= 0.392 mM
Putting the value of
in equation (1) we get the following.
0.392 mM +
= 1 mM
= (1 - 0.392) mM
= 0.608 mM
Thus, we can conclude that concentration of the acid must be 0.608 mM.
Answer:
Option B, HCO3 1-
Explanation:
The valence of Sodium ion is +1 and the valence of HCO3 is -1. Thus, sodium ion has an extra electron to be donated to complete its outer shell while HCO3 needs an electron to complete its outer shell
Hence Na will combine with HCO3 to form NaHCO3
Option B is correct
Answer:
28%
Explanation:
concentration=(solute mass/solution mass)*100
C=concentration
md-solute mass
ms-solution mass
the solution mass is equal to the sum of the solute and solvent mass
ms=3.82+1.49=5.31lb
c=1.49/5.31 * 100=0.28*100=28%