Answer:
2.29 g of N2
Explanation:
We have to start with the <u>chemical reaction</u>:

The next step is to <u>balance the reaction</u>:

We can continue with the <u>mol calculation</u> using the molar mass of
(65 g/mol), so:

Now, with the<u> molar ratio</u> between
and
we can <u>calculate the moles</u> of
(2:3), so:
With the molar mass of
we can <u>calculate the grams</u>:
I hope it helps!
Answer:
gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, and radio waves.
Explanation:
hope that helps! (:
When dealing with making diluted solutions from concentrated solutions, we can use the following formula
c1v1 = c2v2
where c1 and v1 are the concentration and volume of the concentrated solution respectively.
c2 and v2 are the concentration and volume of the diluted solution respectively
substituting these values in the above formula,
20 mL x 0.200 M = C x 250.0 mL
C = 0.0160 M
277.79 atm is the calculated gas pressure.
The ideal gas is a fictitious concept used to study how real gases behave by comparing them to their deviations. The pressure-temperature rules are followed by an ideal gas.
177 atm is the initial pressure. The starting temperature is 298 K (25 °C = 25 + 273 °C).
195°C = 195+273
= 468K is the final temperature.
The pressure temperature relation illustrated below can be used to get the final pressure.
P1/T1 = P2/T1
= P1T2/T1
= 177 atm 468 K /298 K
= 277.97 atm
The final pressure is therefore 277.97 atm.
Learn more about Pressure here-
brainly.com/question/4578923
#SPJ4
Answer:
I am not 100% sure but I think it is 26.981538
Explanation: